
ICS API FOR JAVA
User’s Manual v6.0

I n t e r n e t C o m m e r c e S y s t e m ™

PUREEDGE SOLUTIONS INC.

Revision 2, August 6, 2003.

Copyright © 2000 – 2003 by PureEdge Solutions Incorporated. All rights reserved.

U.S. Government Restricted Rights. The Product is provided with RESTRICTED RIGHTS. Use,
modification, reproduction, release, performance, display or disclosure by the government is subject to
restrictions as set forth in subparagraph (b)(3) of The Rights in Technical Data - Noncommercial Items,
DFARS 252.227-7013. The rights stated in subparagraph (c) of the Commercial Computer Software -
Restricted Rights, 48 CFR 52.227-19 are hereby withheld from the government. Manufacturer is
PureEdge Solutions Inc., located at 4396 West Saanich Rd., Victoria, BC Canada V8Z 3E9.

PureEdge Solutions, Internet Commerce System (ICS), and ICS API are trademarks of PureEdge
Solutions, Incorporated. All other products or services mentioned in this manual are trademarks,
registered trademarks, service marks, or registered service marks of their respective companies or
organizations.

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

The MD5 Message-Digest Algorithm is Copyright \251 1991, 1992 RSA Data Security, Inc.

For further documentation and up-to-date information, please visit our website at:
www.docs.PureEdge.com

PureEdge Solutions www.PureEdge.com

tel. 1-888-517-2675 fax. 250-708-8010 email. info@PureEdge.com

address. 4396 West Saanich Rd., Victoria, B.C. V8Z 3E9

Contents
INTRODUCTION . 1

ABOUT THIS MANUAL . 1

ABOUT THE ICS API . 3

WHERE THE ICS API FITS IN YOUR SYSTEM . 3
DIFFERENCES BETWEEN THE JAVA AND C EDITIONS OF THE API . 3
THE API DATA TYPES . 4
ABOUT THE API CONSTANTS . 5

OVERVIEW OF THE FORM STRUCTURE. 7

THE NODE STRUCTURE. 7
THE NODE HIERARCHY. 7
REFERENCES . 8
ADVANCED INFORMATION ABOUT THE NODE STRUCTURE . 11

INTRODUCTION TO THE FORM LIBRARY . 15

ABOUT THE FORM LIBRARY . 15

GETTING STARTED WITH THE FORM LIBRARY . 17

SETTING UP YOUR APPLICATION . 17
INITIALIZING THE ICS API . 19
LOADING A FORM . 19
RETRIEVING A VALUE FROM A FORM. 20
SETTING VALUES IN A FORM . 21
WRITING A FORM TO DISK . 21
CLOSING A FORM . 22
COMPILING YOUR APPLICATION. 22
DISTRIBUTING APPLICATIONS THAT USE FORM METHODS . 22
SUMMARY . 23

FORM LIBRARY QUICK REFERENCE GUIDE . 25

ICS API CLASSES AND METHODS . 25
ABOUT THE METHOD DESCRIPTIONS . 27
ABOUT SPECIFIED OBJECT NODES . 27

THE CERTIFICATE CLASS . 29

GETDATABYPATH. 30

THE DTK CLASS . 35

ii | Contents
INITIALIZE . 36

THE FORMNODEP CLASS. 39

ADDNAMESPACE . 40
CREATECELL . 42
DELETESIGNATURE . 44
DEREFERENCEEX. 46
DESTROY . 49
DUPLICATE . 50
ENCLOSEFILE. 52
ENCLOSEINSTANCE . 54
EXTRACTFILE . 56
EXTRACTINSTANCE . 57
GETATTRIBUTE . 60
GETATTRIBUTELIST . 62
GETCERTIFICATELIST . 64
GETCHILDREN . 66
GETINFOEX . 68
GETLITERALBYREFEX . 70
GETLITERALEX . 73
GETLOCALNAME. 74
GETNAMESPACEURI . 76
GETNAMESPACEURIFROMPREFIX . 78
GETNEXT. 80
GETNODETYPE . 81
GETPARENT . 82
GETPREFIX. 84
GETPREFIXFROMNAMESPACEURI . 86
GETPREVIOUS . 88
GETREFERENCEEX . 89
GETSECURITYENGINENAME . 92
GETSIGLOCKCOUNT . 94
GETSIGNATURE . 95
GETSIGNATUREVERIFICATIONSTATUS . 97
ISXFDL. 98
REMOVEATTRIBUTE . 100
REMOVEENCLOSURE . 102
SETACTIVEFORCOMPUTATIONALSYSTEM . 103
SETATTRIBUTE . 105
SETFORMULA . 107
SETLITERALEX . 109
SETLITERALBYREFEX. 111
SIGNFORM . 114
VALIDATEHMACWITHSECRET. 116
VALIDATEHMACWITHHASHEDSECRET . 119

Contents | iii
VERIFYALLSIGNATURES . 122
VERIFYSIGNATURE . 124
WRITEFORM. 127
XMLMODELUPDATE . 129

THE HASH CLASS . 131

HASH . 132

THE IFSSINGLETON CLASS . 135

GETFUNCTIONCALLMANAGER . 136
GETLOCALIZATIONMANAGER . 137
GETSECURITYMANAGER . 138
GETXFDL . 139

THE LOCALIZATIONMANAGER CLASS . 141

SETDEFAULTLOCALE . 142

THE SECURITYMANAGER CLASS . 143

LOOKUPHASHALGORITHM . 144

THE SIGNATURE CLASS . 145

GETDATABYPATH. 146

THE XFDL CLASS . 151

CREATE . 152
GETENGINECERTIFICATELIST . 155
ISDIGITALSIGNATURESAVAILABLE. 158
READFORM . 159

INTRODUCTION TO THE FCI LIBRARY. 163

ABOUT FUNCTIONS, PACKAGES AND EXTENSIONS. 163
ABOUT THE FUNCTION CALL INTERFACE (FCI) . 164

GETTING STARTED WITH THE FCI LIBRARY. 169

CREATING EXTENSIONS WITH THE FCI METHODS . 169
SETTING UP THE IFX EXTENSION . 170
SETTING UP THE FUNCTIONCALL CLASS . 172
BUILDING THE IFX EXTENSION . 179
TESTING AND DISTRIBUTING IFX EXTENSIONS . 180
SUMMARY . 183

FCI LIBRARY QUICK REFERENCE GUIDE . 185

ABOUT THE METHOD DESCRIPTIONS . 185

iv | Contents
THE EXTENSION CLASS . 187

EXTENSIONINIT . 188

THE FUNCTIONCALL CLASS. 189

FUNCTIONCALL CLASS CONSTANTS. 190
EVALUATE . 192
HELP . 196

THE IFX CLASS . 199

DEREGISTERINTERFACE. 200
GETINTERFACEINSTANCES . 201
REGISTERINTERFACE . 203

THE FUNCTIONCALLMANAGER CLASS . 205

DEREGISTERFUNCTIONCALL . 206
EVALUATEFUNCTIONCALL . 208
GETDEFAULTLISTENER . 211
REGISTERFUNCTIONCALL . 212
GETFUNCTIONCALLHELP . 215
GETFUNCTIONCALLLIST . 218
GETFUNCTIONCALLPACKAGELIST . 219

APPENDIX: JSP SUPPORT . 221

SYSTEM REQUIREMENTS . 221
COMBINING JSP AND XFDL. 221
SAMPLE JSP PAGE . 222
SAMPLE JSP APPLICATION . 223

INDEX . 225

Introduction
Welcome to the Java™ Edition of the user’s manual for the ICS API. The ICS API extends the
capabilities of the Internet Commerce System by enabling you to:

■ Manipulate XFDL forms from new or existing applications.

■ Create custom-built functions that may be integrated into XFDL forms.

This section discusses the organization and format of this manual. To learn more about the API, refer to
“About the ICS API” on page 3.

About This Manual
This manual contains five major sections:

Who Should Read This Manual

The ICS API is designed to be easy to use for any moderately experienced programmer. However, the
skill level required to develop particular functions may be quite high. This document is intended for
developers who have a working knowledge of:

■ Java Programming and syntax.

■ Extensible Forms Description Language (XFDL) and syntax. Refer to the Extensible Forms
Description Language Specification for more information.

Document Conventions

The following conventions appear throughout this manual:

■ Sample code is presented in a monospaced font, and is indented to make the code stand out.

public void extensionInit(Extension theExtension) throws UWIException
{

Section Page

Overview of the Form Structure – explains how XFDL forms are stored in
memory.

7

Getting Started with the Form Library – provides a detailed tutorial
demonstrating how to create a simple application that interacts with an XFDL
form.

17

Form Method Library – a reference to the Java methods contained in the
Form API. Each method description includes sample code.

25

Getting Started with the FCI Library – provides a detailed tutorial
demonstrating how to create a simple function that you can call from an
XFDL form.

169

FCI Quick Reference Guide – a reference to the Java methods contained in
the FCI API. Each method description includes sample code.

185

2 | About This Manual
FunctionCall theActualCode = new SamplePluginFCI(theExtension);
}

■ Text in bold italics denotes information that you need to supply.

<label sid = "l1">
your input
<size>

<ae>20</ae>
<ae>1</ae>

</size>
<value compute = "sample_Package.multiply(f1.value,f2.value)"></value>

</label>

■ The hash symbol (#) represents a number.

■ Angle brackets enclose placeholders. For example, <API Program Folder> represents the actual
folder in which you installed the API.

■ This manual uses “xx” or “xxx” in place of the two or three digit version number of the API. In
particular, these placeholders appear when referring to file names, folders, and directories that
contain the API’s version number.

■ Braces enclose optional items. The following example indicates that the item tag (including the
period after it) is optional:

{itemtag.} option

■ Brackets are used to indicate a sequence of choices, and the pipe symbol (|) is used to indicate
“or”. The following example indicates that you can use a number or a name:

(number|name)

About the ICS API | 3
About the ICS API
The ICS Application Programmer Interface (API) consists of a collection of programming tools to help
you develop applications that can interact with XFDL forms. These tools are available for both C and
Java programming environments. The API enables you to access and manipulate forms as structured
data types.

The API is divided into two libraries: the Form Library and the Function Call Interface (FCI) Library.
The Form Library allows you to create applications that:

■ Read and write forms.

■ Retrieve information from form elements.

■ Add cells to certain form items.

■ Insert information into form elements.

For more information about the Form Library refer to page 25.

The Function Call Interface (FCI) Library provides additional methods that:

■ Create, duplicate, or delete form elements.

■ Manipulate and verify digital signatures.

■ Handle attachments.

■ Create custom functions for use within forms.

For more information about the FCI Library refer to page 185.

Where the ICS API Fits in Your System
The Internet Commerce System (ICS) provides a powerful suite of forms software for creating, using
and transmitting forms over the Internet. The main components of the Internet Commerce System are:

ICS Viewer – Use the Viewer to view XFDL forms just as you would use a web browser to view
HTML pages. You can also use the Viewer to fill out forms and submit them for review.

ICS Designer – The Designer provides an easy to use WYSIWYG design environment for creating
XFDL forms. Use the Designer to create forms quickly and easily.

ICS API - The ICS API is made up of Form and FCI methods. Use the Form Library of methods to
develop applications that manipulate XFDL forms. Use the FCI methods to develop customized
functions that can be called from within forms.

Differences Between the Java and C Editions of the API
The main difference between the Java and C versions of the ICS API is the inclusion of an object-
oriented interface for the Java platform. The XFDL form node structure is unaltered and the
functionality of the two versions of the API is the same.

4 | The API Data Types
The API Data Types

FormNodeP Objects

The methods in the Form Library store forms in memory as a series of linked nodes. Each node,
regardless of its level in the hierarchy, is represented by a FormNodeP object. Before you can use a
FormNodeP object you must import the FormNodeP class as follows:

import com.PureEdge.xfdl.FormNodeP

About Memory Use

The Form methods are responsible for creating and populating these nodes. Furthermore, once you are
done working with a form, you must use the destroy method on the root node of the form to remove it
from memory.

Comparing FormNodeP Objects

Be aware that in Java, objects cannot be compared using the == operator. The ICS API behaves in the
same way. Accordingly, when comparing FormNodeP objects, you should always use Java’s .equals
method.

Holder Objects

Because Java does not support output parameters, methods are normally limited to returning a single
value. However, there are many cases in which it is useful to return multiple values from a single
method. In these cases, the API uses Holder objects.

Holder objects are objects that are created with a single variable. These objects can then be passed into
a method that sets that variable. Once the method returns, the value of variable can be retrieved, thereby
creating an artificial output parameter for the method.

Holder Constructors

Each Holder class provides two constructors:

■ An empty constructor that creates an object and declares the an empty variable called value. For
example, to create an empty IntHolder you would use the following constructor:

IntHolder myInt = new IntHolder();

■ A constructor that creates an object, declares a variable called value, and and sets the value of the
variable. For example, to create a IntHolder object with a value of 5, you would use the following
constructor:

IntHolder myInt = new IntHolder(5);

About the API Constants | 5
Getting and Setting Holder Values

To get or set the value of a particular Holder object, simply dereference the holder’s value. For
example:

int value = myIntHolder.value;
myIntHolder.value = 2;

Holder Types

The following table lists the holder types available, the data type of each holder’s variable, and the class
you must import to use the holder:

Note: While certain methods in the FCI library require an IFSUserDataHolder as a parameter, you
will not need to manipulate this object.

About the API Constants
Several API methods may use or return constants. When using these constants, you must:

■ Import the library that contains the constant.

■ Prefix the constant with its class.

For example, the ITEM_REFERENCE constant belongs to the FormNodeP class. To use it, you would
first ensure that you have imported the FormNodeP class. You could then refer to the constant as:

FormNodeP.ITEM_REFERENCE

The following table lists the constant prefixes and the classes you must import:

Holder Data Type Class

BooleanHolder Boolean com.PureEdge.BooleanHolder

IFSUserDataHolder IFSUserData com.PureEdge.IFSUserDataHolder

IntHolder Int com.PureEdge.IntHolder

ShortHolder Short com.PureEdge.ShortHolder

ShortArrayHolder Short [] com.PureEdge.ShortArrayHolder

StringHolder String com.PureEdge.StringHolder

StringArrayHolder String [] com.PureEdge.StringArrayHolder

StringListHolder String [] com.PureEdge.StringListHolder

Prefix Class

FormNodeP com.PureEdge.xfdl.FormNodeP

6 | About the API Constants
SecurityManager com.PureEdge.security.SecurityManager

SecurityUserStatusType com.PureEdge.security.SecurityUserStatusType

XFDL com.PureEdge.xfdl.XFDL

Prefix Class

Overview of the Form Structure | 7
Overview of the Form Structure
This section provides an overview of an XFDL form as it is represented in memory. Developers must
understand the memory structure of a form to effectively develop applications using the ICS API.

The Node Structure
When a form is loaded into memory, it is constructed as a series of linked nodes. Each node represents
an element of the form, and together these nodes create a tree that describes the form. The following
diagram illustrates the general composition of a single node.

Each node within the tree has the following properties:

■ Type - For page and item nodes, this describes the type of node, such as button, line, field, and so
on. Page nodes are always of type page.

■ Literal - The literal value of the node (for example, a literal string). If the node has a formula, the
result of the formula will be stored here.

■ Identifier - The page tag, item tag, option name, or custom name assigned to the node.

■ Compute - The compute assigned to the node (for example, "field_1.value + field_2.value"). The
result of the compute will be stored in the literal of the node.

Depending on the node type, some or even all of these properties may be null.

The Node Hierarchy
Every node is part of an overall hierarchy that describes the complete form. This hierarchy follows a
standard tree structure, with the top of the tree being the top (or root) of the hierarchy.

The diagram on the following page illustrates the typical tree structure for a simple form.

The elements of the hierarchy, in descending order, are:

■ Form – Each form has one form level node. This is the root node of the tree.

■ Page – Each forms contains pages, which are represented as children of the form node. Each form
has at least two page nodes – one for the global page, which stores the global settings, and one for
the first page of the form.

■ Item – Each page contains items, which are represented as children of the page node. An item node
is created for each item, including the global item which stores page settings.

■ Option – Each item contains options, which are represented as children of the item node. An option
node is created for each option.

■ Argument – Options often contain further settings, or arguments, which are represented as children
of the option node or as children of other argument nodes. There is often more than one level of
argument node created below an option node, depending on the option’s settings. The easiest way

8 | References
to access a particular node in the hierarchy is to use a reference. References allow you to locate a
specific node without first having to locate the parent of that node.

References
References allow you to identify a specific page, item, option, or argument by providing a “path” to that
element. This means that you can access an element directly without having to locate any of its
ancestors. The syntax of a reference follows this general pattern:

References | 9
page.item.option[argument]

Each element of the reference is constructed as follows:

■ Page and Item — Pages and items are identified by their scope identifiers (sid). For example,
Page1 or Field1.

■ Options — Options are identified by their tag name. For example, value or itemlocation.

■ Arguments — Arguments are typically identified by a zero-based numeric index, but may also be
identified by their tag name if that name is unique within the scope of their parent. Argument
references are always enclosed in brackets. For example, [1] or [message].

Arguments can also have any depth. For example, you might have an argument that contains
arguments. You can reference additional levels of depth by adding another bracketed reference. For
example, to refer to the first argument in the first argument, you would use [0][0].

You can create references to any level of the node hierarchy. For example, the following table illustrates
a number of references starting at different levels of the form:

Dereferencing

When making a reference to an item node, there may be times when you do not know which node to
reference because it depends on some action from the user of the form. Consider a situation in which a
user selects a cell from a list. Because you don’t know beforehand which cell the user will choose, it is
not possible to explicitly reference the item node for the chosen cell. In such cases you would use
dereferencing to retrieve the node indirectly.

Essentially, dereferencing allows you to make a dynamic reference that is evaluated at runtime. This is
accomplished by placing the -> symbol to the right of the dynamic reference.

For example, consider a list item called List1 that has three cells called Cell1, Cell2, Cell3. If you
wanted to access the item node of the cell selected by the user, we would use the following reference
string:

List1.value->

At runtime, the portion of the expression that is to the left of the dereference symbol is evaluated and
replaced. If the user chose the second cell, List1.value would be evaluated and replaced with:

Cell2

As a result, the item node for Cell2 would be returned.

In some cases, instead of accessing the item node of the chosen cell, you may want to access one of the
cell’s option nodes. Again, dereferencing is used. The reference string would be:

Start At Ref to Page Ref to Item Ref to Option Ref to Argument

Page Page1 Page1.Field1 Page1.Field1.format Page1.Field1.format[message]

Item — Field1 Field1.format Field1.format[message]

Option — — format format[message]

Argument — — — [message]

10 | References
List1.value->value

As before, the above expression is evaluated at runtime. The expression to the left of the dereference
symbol is evaluated and replaced, just as before. So if the second cell was selected, List1.value would
be evaluated as Cell2. This value is then concatenated with the expression to the right of the dereference
symbol. This would produce:

Cell2.value

As a result, the option node for Cell2.value would be returned.

Note: Do not include any spaces before or after the dereference symbol (->).

Namespace in References

References that include options or arguments in any namespace other than XFDL normally require the
inclusion of the namespace prefix in the reference. For example, if you were referencing “myOption” in
the “custom” namespace, you would refer to that option as “custom:myOption” as shown:

page_1.myItem.custom:myOption

If you are referencing named arguments, you should also use the appropriate namespace. For example:

page_1.myItem.custom:myOption[custom:myArgument]

However, if you are referencing an argument by index number you do not need to worry about
namespace. All arguments, regardless of namespace, are indexed in order. For example, if “myOption”
contained two arguments, the first in the XFDL namespace and the second in the custom namespace,
you would use the following reference for the second argument:

page_1.myItem.custom:myOption[1]

Note: Page and item references never require a namespace prefix because they are uniquely
identified by their sid.

The null Namespace

In some cases, forms may have no default namespace or may have a default namespace that is expicitly
set to an empty string. In these cases, you can use null as the prefix for the empty namespace. For
example, the following field declares a default namespace that is empty:

<page sid="Page1">
<field sid="myField" xmlns="">

<value>Test Value</value>
</field>

</page>

In this case, to reference the value of the field, you would use the null prefix as shown:

Page1.null:myField.null:value

Advanced Information about the Node Structure | 11
Advanced Information about the Node Structure
When an XFDL form is stored in memory, it exists as a series of nodes that are linked in a tree structure.
As described in “The Node Hierarchy” on page 7, the tree structure follows this hierarchy: form, page,
item, option, and argument.

Within a single branch of the tree, all elements of the same level are treated as siblings, each of which
has a common parent, and each of which may have its own children.

The following example illustrates the node structure of a simple form, and gives a top-down description
of the node structure.

A Sample Hierarchy

The following XFDL code creates the node hierarchy shown on page 8. The result is a simple form that
contains three items (a line and two labels).

<?xml version = "1.0"?>
<XFDL xmlns="http://www.PureEdge.com/XFDL/6.0"

xmlns:xfdl="http://www.PureEdge.com/XFDL/6.0">

<globalpage sid="global">
<global sid="global"></global>

</globalpage>

<page sid = "PAGE1">

<global sid="global"></global>

<line sid = "REFLINE">
<size>

<ae>20</ae>
<ae>0</ae>

</size>
</line>

<label sid = "LABEL1">
<value>Hello</value>

</label>

<label sid = "LABEL2">
<value>World</value>
<itemlocation>

<ae>
<ae>after</ae>
<ae>LABEL1</ae>

</ae>
<ae>

<ae>expandr2r</ae>
<ae>REFLINE</ae>

</ae>
</itemlocation>

</label>

12 | Advanced Information about the Node Structure
</page>

</XFDL>

The Sample Tree Structure

Each tree begins with the form, or root, node. This node contains no information — it simply represents
the starting point of the tree structure.

Below the form node are the page nodes. In the previous example, there are two page nodes: “global”
and “PAGE1”. The “global” page node stores any global settings that apply to the form while “PAGE1”
stores the contents of the first form page. Any additional pages would also be stored as children of the
form node.

Below each page node are the item nodes. As illustrated in the previous example, the first item node for
any page is always the “global” item. The “global” item stores any page settings that are applied to the
items in that page. Each additional item in the page is stored as a sibling of the global item.

Note: The “global” page node will always have one child: the global item. This global item will
always store the XFDL version number used to create the form, and is also used to store any global
settings that are applied to the form.

Below each item node are the option nodes. Each option node represents an option setting for that item,
such as a background color or font setting.

Below each option node are the argument nodes. These nodes contain the settings for the parent option.
For example, the background color might be set to “blue”. There can be an infinite number and depth of
these nodes, depending upon the number and depth of the settings for that option.

For example, in the sample form, the size node for “REFLINE” has two argument nodes: one for the
width and one for the height. In contrast, the itemlocation node for “LABEL2” has two argument nodes
which themselves have argument nodes as children. The following is an example of the node structure
of the itemlocation option:

<itemlocation>
<ae>

<ae>after</ae>
<ae>LABEL1</ae>

</ae>
<ae>

<ae>expandr2r</ae>
<ae>REFLINE</ae>

</ae>
</itemlocation>

argument node level I
argument node level II
argument node level II

argument node level I
argument node level II
argument node level II

Advanced Information about the Node Structure | 13
itemlocation Node Structure

Thus, in storing the itemlocation option, two levels of argument nodes are created. The first level
describes the number of array elements in the option (two). The second level gives the arguments for
each element (the modifier and the reference item).

Due to their potential complexity, pay careful attention to the mapping of argument nodes.

Note: In cases where an option has multiple elements in an array (for example, itemlocation), there
will be a single option node, but a separate argument node for each element in the array.

Node Properties

There are several levels of nodes in an XFDL form: form (or root), page, item, option, and argument
(which can have an infinite number of levels). Each node has four properties: literal, type, identifier, and
compute. A node does not necessarily contain information for every property.

For example, a page node can never have values for the compute or literal properties. And while a value
for the user data property is optional, a page node must always have values for the type and identifier
properties.

The following table illustrates what properties may be in use for each node level.

argument node
level I

argument node level I

argument node
level II

Node Property

Level Literal Type Identifier Compute

Form no no no no

Page no always always no

Item no always always no

Option yes no always yes

Argument
(at any level) yes no yes yes

yes = node can
have that
property

always = node
always has that
property

no = node
cannot have
that property

14 | Advanced Information about the Node Structure

Introduction to the Form Library | 15
Introduction to the Form Library
The Form Library is a collection of methods that can be used in developing applications that manipulate
XFDL forms. Using the methods in the Form Library, your applications can:

■ Read and write forms.

■ Retrieve information contained in a form’s elements.

■ Assign information to the elements of a form.

■ Create new elements within a form.

■ Remove elements from a form.

■ Extract images or enclosures from a form.

Essentially, an XFDL form may be thought of as a structured data type, with the API as the means for
accessing this data structure.

About the Form Library

How the Form and FCI Libraries Work Together

The FCI Library is a collection of methods for developing custom-built functions that form developers
may call from XFDL forms. Methods in the FCI Library will allow you to create and distribute
packages of functions for forms. For more information about the FCI methods refer to the section called
“Introduction to the FCI Library” on page 163.

You can use Form methods along with Java system methods and other FCI methods to implement the
details of each function you create using the FCI Library.

The Form Classes

The Form Library is composed of the following classes:

Class Description

DTK The DTK class encapsulates methods that apply to the ICS
API as a whole.

FormNodeP The FormNodeP class encapsulates methods that apply to
particular form nodes.

XFDL The XFDL class encapsulates methods that create
FormNodeP objects as well as an assortment of other
methods.

UWIException The UWIException class encapsulates the error handling
mechanism. The API detects all errors by throwing a
UWIException object, which is a subclass of the Java
Exception class.

16 | About the Form Library
Using Signatures with the Form Library

If an option contains a compute element then it may also contain the current computed value of the
option.

Once an option has been digitally signed, it maintains the signed literal value of the option. Once
signed, this value will not change, even if the option setting is a formula.

The literal value is stored as simple character data in the computed option, as shown below:

<field sid="FIELD1">
<value compute = ’page1.nameField.value’>Jane E. Smith</value>

</field>

The node structure for the value option specified above is:

The Viewer sets this literal value when a form is signed, submitted, or saved (and discards any old value
if necessary). When readForm is invoked, the current value is set and cannot be changed. Because a
digitally signed formula never fires after being signed, the current value for the option is always the
same – and therefore it is possible to reference the option and get the signed literal value.

field FIELD1

Jane E. Smith value

Page1.nameField.value

Getting Started with the Form Library | 17
Getting Started with the Form Library
This section provides a detailed tutorial to help you understand how to use the Form Library. By
working through the tutorial, you will perform all the steps involved in creating a simple application
that uses methods from the Form Library to interact with an XFDL form.

The sample application in this tutorial reads an input form called calculateAge.xfd into memory. It
retrieves from specific input fields the user’s birth day, month, and year as well as the current date. It
then places these values into hidden fields in the form. This triggers the form to compute the user’s age
and display the result. When complete, the application saves the changes made to .xfd as a new form
called Output.xfd.

Note: The sample application described in this tutorial is included with the API and can be found in
the folder: <API Program Folder>\Samples\Java\Form\Demo\Calculate_Age\. The API also includes
a longer sample application that demonstrates other Form Library methods. This sample and the
XFDL form to use with it are located in the folder: <API Program Folder>\Samples\Java\Form\
Demo\ Sample_Application\.

The tutorial is divided into the following topics:

Note: Before you can build applications using the ICS API, you must install the API and set up your
development environment. Refer to the ICS API Installation and Setup Guide for more information.

Setting up Your Application
As with any Java application, you must begin by importing the necessary classes and defining the
program’s classes.

1. Create a new Java source file called calculateAge.java.

2. Any program that calls methods from the ICS API must import the following classes:

Procedure Page

Setting up Your Application 17

Initializing the API 19

Loading a Form 19

Retrieving a Value from a Form 20

Setting Values in a Form 21

Writing a Form to Disk 21

Closing a Form 22

Compiling Your Application 22

Distributing Your Application 22

18 | Setting up Your Application
import com.PureEdge.DTK;
import com.PureEdge.xfdl.FormNodeP;
import com.PureEdge.xfdl.XFDL;
import com.PureEdge.error.UWIException;
import com.PureEdge.IFSSingleton;

■ You must place these lines before any class or interface definitions.

3. Set up the rest of your application. This generally includes defining any classes and methods for
your application as well as declaring and initializing any variables you may need. The following
code sets up the Calculate Age application:

■ Create the public class CalculateAge and the main method for the class.

public class CalculateAge
{

■ Declare a FormNodeP object called theForm to represent the form.

private static FormNodeP theForm;

■ Create the program’s main method.

public static void main(String argv[])
{

■ Declare the program’s variables.

int birthYear;
int birthMonth;
int birthDay;

■ The program’s main method essentially consists of a series of calls to other methods. The
Form Library methods are called from the definition of these methods.

try
{

initialize();

loadForm();

birthYear = getBirthYear();
birthMonth = getBirthMonth();
birthDay = getBirthDay();

setBirthYear(birthYear);
setBirthMonth(birthMonth);
setBirthDay(birthDay);

saveForm();

■ Free the memory in which the form was stored. For more information see “Closing a Form” on
page 22.

theForm.destroy();
}

■ Finally, perform exception handling.

Initializing the ICS API | 19
catch (Exception ex)
{

ex.printStackTrace();
}

/* Additional code removed */

}
}

Initializing the ICS API
Any application that uses API methods must initialize the ICS API to ensure correct error and memory
handling behavior. The sample application does this in a separate method called initialize. In turn,
initialize calls the Form Library method DTK.initialize and passes it the name of the current program,
as shown below:

private static void initialize() throws UWIException
{

DTK.initialize("calculateAge", "1.0.0", "4.5.0");
}

Note: For detailed information about the initialize method, including a description of its
parameters, refer to page 36.

Loading a Form
Before your program can begin working with a form, you must load it into memory. CalculateAge does
this by defining a loadForm method to handle these tasks.

private static void loadForm() throws Exception
{

4. Before you can load the form, declare the XFDL object:

XFDL theXFDL;

5. Use IFSSingleton.getXFDL to assign the XFDL object to theXFDL. This allows you to access
the root node of the form.

theXFDL = IFSSingleton.getXFDL();

if(theXFDL == null)
throw new Exception("Could not find interface");

■ The loadForm method uses the Form Library method readForm to load the form into
memory. Before you can use readForm you must retrieve the XFDL object.

6. Call the API method readForm to load the form into memory. The method returns a reference to
the root node of the form.

20 | Retrieving a Value from a Form
theForm = theXFDL.readForm("calculateAge.xfd", 0);
}

■ The argument “calculateAge.xfd” is the name of the form to read from the local drive.

Note: For more information about the readForm method, refer to page 159.

Retrieving a Value from a Form
Once you have set up and initialized your application with the ICS API and loaded a form into memory,
your application is ready to start working with the form. The following code defines the getBirthDay
method to retrieve a specific value from the form calculateAge.xfd. It does this by using the Form
Library method getLiteralByRefEx.

7. Define the method getBirthDay and a string variable called temp.

private static int getBirthDay() throws Exception
{
String temp;

8. Call getLiteralByRefEx to retrieve the literal information contained in the form node
PAGE1.BIRTHDAY.value

temp = theForm.getLiteralByRefEx(null, "PAGE1.BIRTHDAY.value", 0,
null, null);

Note: For detailed information about the getLiteralByRefEx method, including a description of its
parameters, refer to page 70.

■ If the method returns a literal value, convert it into an integer value; otherwise, indicate that no
value was entered into the field and throw an exception.

if (temp.length() > 0)
{

return Integer.parseInt(temp);
}
else
{

throw new UWIException("The birth day was not entered.");
}

}

9. Define the following methods to retrieve the user’s birth month and year from the input form.
These methods will be exactly the same as getBirthDay except for the parameters passed to
getLiteralByRefEx.

■ getBirthMonth() – retrieves the value PAGE1.BIRTHMONTH.value from theForm.

■ getBirthYear() – retrieves the value PAGE1.BIRTHYEAR..value from theForm.

Setting Values in a Form | 21
Setting Values in a Form
This section demonstrates how to assign values to form elements. To do this, use the Form Library
method setLiteralByRefEx, as shown below:

10. Define the method setBirthDay and an integer variable to reference the user’s day of birth.

private static void setBirthDay(int birDay) throws Exception
{

Integer day = new Integer(birDay);

11. Call the method setLiteralByRefEx to assign the user’s day of birth to the form’s hidden day field.

theForm.setLiteralByRefEx(null, "PAGE1.HIDDENDAY.value", 0,
null, null, day.toString());

}

Note: For detailed information about the setLiteralByRefEx method, including a description of its
parameters, refer to page 111.

12. Define the remaining methods to set the user’s birth month and year in the form’s hidden fields.
These methods will be exactly the same as setBirthDay except for the parameters passed to
getLiteralByRefEx.

■ setBirthMonth() – sets the value PAGE1.HIDDENMONTH.value in theForm.

■ setBirthYear() – sets the value PAGE1.HIDDENYEAR.value from theForm.

Writing a Form to Disk
Once you have finished making the desired changes to the form, you should save it to disk. If you want
to retain the original form (calculateAge.xfd), you should save the modified form under a new name.
This program saves the modified form as Output.xfd.

13. Define the method saveForm. This method demonstrates the use of the FormNodeP method
writeForm.

private static void saveForm() throws UWIException
{

14. Call the Form method writeForm and pass it the new name of the form.

theForm.writeForm("Output.xfd", null, 0);
}

Note: For detailed information about the writeForm method, including a description of its
parameters, refer to page 127.

22 | Closing a Form
Closing a Form
Remember that the object called theForm is a reference to the root node of the form. Since the program
no longer needs the form, you can free this memory for other uses by using the API’s destroy method.
This method deletes from memory the root node of the form and all of its children (in other words, the
complete form).

15. The program’s main method calls the API’s destroy method to delete theForm object.

theForm.destroy();
}

Note: For detailed information about the destroy method, including a description of its parameters,
refer to “destroy” on page 49.

■ Display any exceptions before terminating.

catch (Exception ex)
{

ex.printStackTrace();
}

}

Compiling Your Application
Once you have generated the Java source files for your application, you must compile the source code.

■ Use a Java compiler that is supported by this API to compile your Java files. Refer to the ICS API
Installation and Setup Guide for more information about compatible development environments.

■ Before building your application you should have a .java file that represents your application. After
compiling the .java file you will have a file with the same name as the .java file but with the
extension .class.

■ For example, after compiling the source code for the application calculateAge.java your Java
compiler will create a corresponding file: calculateAge.class

■ The details of compiling your source code are not included in this manual. Consult your Java
documentation for specific information on how to use your Java compiler.

Distributing Applications That Use Form Methods
32-bit applications that use methods from the ICS API will run on any computer that supports the Java
Runtime Environment or the Microsoft Software Development Kit For Java v3.1 or later.

Summary | 23
If you distribute applications that use ICS API methods, you will also need to distribute a number of
API files. Refer to the ICS API Installation and Setup Guide for information on distributing applications
that use the Form Library.

Summary
By working through this section you have successfully built the Calculate Age application. In the
process, you have learned how to initialize and compile form applications and use the following
methods from the API method library:

For a longer example using the Form Library of methods, refer to the sample application
formSample.java available in the folder: <API Program Folder>\Samples\Java\Form\Demo\
Sample_Application. This folder also contains the source code for the corresponding sample form
formSample.xfd.

■ initialize ■ getXFDL

■ readForm ■ getLiteralByRefEx

■ setLiteralByRefEx ■ writeForm

■ destroy

24 | Summary

Form Library Quick Reference Guide | 25
Form Library Quick Reference Guide
This section provides detailed information on the structure of the Form Library. After an introduction to
the classes in the API, FormNodeP objects, and constants, a quick reference section describes each
method in detail.

The quick reference includes a separate section for each class in the API:

■ “The DTK Class” on page 35.

■ “The IFSSingleton Class” on page 135.

■ “The XFDL Class” on page 151.

■ “The FormNodeP Class” on page 39.

■ “The Certificate Class” on page 29.

■ “The Hash Class” on page 131.

■ “The SecurityManager Class” on page 143.

■ “The Signature Class” on page 145.

■ “The LocalizationManager Class” on page 141.

Within each section, the methods are presented alphabetically.

ICS API Classes and Methods
The Form Library consists of the following classes and methods:

Class Description Methods

Certificate The Certificate class include a method
for getting information about digital
certificates.

getDataByPath

DTK The DTK class encapsulates methods
that apply to the ICS API as a whole.

initialize

FormNodeP The FormNodeP class encapsulates
methods that apply to particular form
nodes.

addNamespace
createCell
deleteSignature
dereferenceEx
destroy
duplicate
encloseFile
encloseInstance
extractFile
extractInstance
getAttribute
getAttributeList
getCertificateList
getChildren
getInfoEx
getLiteralEx

26 | ICS API Classes and Methods
FormNodeP (cont) The FormNodeP class encapsulates
methods that apply to particular form
nodes.

getLiteralByRefEx
getLocalName
getNamespaceURI
getNamespaceURIFromPrefix
getNext
getNodeType
getParent
getPrefix
getPrefixFromNamespaceURI
getPrevious
getReferenceEx
getSecurityEngineName
getSigLockCount
getSignature
getSignatureVerificationStatus
isXFDL
removeAttribute
removeEnclosure
setActiveForComputationalSystem
setAttribute
setFormula
setLiteralEx
setLiteralByRefEx
signForm
validateHMACWithSecret
validateHMACWithHashedSecret
verifyAllSignatures
verifySignature
writeForm

Hash The Hash class includes a method for
hashing strings.

hash

IFSSingleton The IFSSingleton class provides a
static interface to XFDL objects.

getFunctionCallManager
getLocalizationManager
getSecurityManager
getXFDL

LocalizationManager The LocalizationManager class
includes a method for setting the locale
(language) that the API uses.

setDefaultLocale

SecurityManager The SecurityManager class includes a
method for obtaining a hashing
alogorithm.

lookupHashAlgorithm

Signature The Signature class includes a method
for getting information about signature
objects.

getDataByPath

XFDL The XFDL class encapsulates methods
that relate to FormNodeP objects.

create
getEngineCertificateList
isDigitalSignaturesAvailable
readForm

Class Description Methods

About the Method Descriptions | 27
About the Method Descriptions
The methods in this reference guide are listed according to the class they belong to and are described
using the following format:

■ Description: Provides a general description of what the method does.

■ Method: Lists the method’s signature and type of value returned (if any).

■ Parameters: Lists and describes each parameter in detail.

■ Returns: Indicates what value is returned by the method.

■ Notes: Provides additional information to help you use the method.

■ Example: Provides sample code that uses the method in question.

About Specified Object Nodes
In the following method descriptions, the term “specified object node” refers to the node or object on
which a method is being invoked. For instance, in the call theForm.destroy(), the object called theForm
is the node which is passed to destroy for processing.

28 | About Specified Object Nodes

 The Certificate Class | 29
The Certificate Class

The Certificate class allows you to get information from Certificate objects.

■ Any application that makes calls to the Certificate methods must first import the following class:

com.PureEdge.security.Certificate

■ Many of the methods in the ICS API will throw a generic exception called a UWIException if an
error occurs. Import the following class to any .java files that call methods from the ICS API:

com.PureEdge.error.UWIException

30 | getDataByPath com.PureEdge.security.Certificate
getDataByPath

Description

This function retrieves a piece of data from a certificate object.

Method

public String getDataByPath(

String thePath,

boolean tagData,

BooleanHolder encoded,

) throws UWIException;

Parameters

Notes

About Data Paths

Data paths describe the location of information within a certificate, just like file paths describe the
location of files on a disk. You describe the path with a series of colon separated tags. Each tag
represents either a piece of data, or an object that contains further pieces of data (just like directories can
contain files and subdirectories).

For example, to retrieve the version of a certificate, you would use the following data path:

version

Expression Type Description

thePath String The path to the data you want to retrieve. See the
Notes section below for more information on data
paths.

tagData boolean True if the path should be prepended to the data. If the
path is prepended, a colon and space are used as a
separator.

For example, suppose the path is “Issuer: CN” and the
data is “PureEdge”. If true, the path will be prepended,
producing “Issuer: CN: PureEdge”. If false, the path
will not be prepended, and the result will be
“PureEdge”.

encoded BooleanHolder True if the return data is base 64 encoded. The function
returns binary data in base 64 encoding.

com.PureEdge.security.Certificate getDataByPath | 31
However, to retrieve the subject’s common name, you first need to locate the subject, then the common
name within the subject, as follows:

Subject: CN

Some tags may contain more than one piece of information. For example, the issuer’s organizational
unit may contain a number of entries. You can either retrieve all of the entries as a comma separated list,
or you can specify a specific entry by using a zero-based element number.

For example, the following path would retrieve a comma separated list:

Issuer: UO

While adding an element number of 0 would retrieve the first organizational unit in the list, as shown:

Issuer: UO: 0

Certificate Tags

The following table lists the tags available in a certificate object:

Distinguished Name Tags

The following table lists the tags available in a distinguished name object:

Tag Description

Subject The subject’s distinguished name. This is an object that contains further
information, as detailed in Distinguished Name Tags.

Issuer The issuer’s distinguished name. This is an object that contains further
information, as detailed in Distinguished Name Tags.

IssuerCert The issuer’s certificate. This is an object that contains the complete list of
certificate tags.

Engine The security engine that generated the certificate. This is an object that contains
further information, as detailed in Security Engine Tags.

Version The certificate version.

BeginDate The date on which the certificate became valid.

EndDate The date on which the certificate expires.

Serial The certificate’s serial number.

SignatureAlg The signature algorithm used to sign the certificate.

PublicKey The certificate’s public key.

FriendlyName The certificate’s friendly name.

Tag Description

CN The common name.

E The email address.

32 | getDataByPath com.PureEdge.security.Certificate
Security Engine Tags

The following table lists the tags available in the security engine object:

Returns

A string containing the certificate data (null if no data is found), or throws a generic exception
(UWIException) if an error occurs.

Example

The following function uses dereferenceEx to locate a signature button in the form. It then uses
getCertificateList to get a list of valid certificates for that button. Next, the function cycles through the
returned certificates, uses getDataByPath to get the common name for each certificate, and identifies
the certificate with a common name of “PureEdge Server”. Finally, the function uses signForm to sign
the form with the server’s certificate.

public void serverSign(FormNodeP form) throws UWIException
{
IntHolder theStatus;
FormNodeP buttonNode;
Certificate [] certList;
Signature theSignature;
String signerCommonName;
boolean encodedResult;
int certCount;
int correctCert = -1;
int i;

if ((buttonNode = theForm.dereferenceEx(null, "PAGE1.SIGBUTTON1",
0, FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

T The title.

O The organization.

OU The organizational unit.

C The country.

L The locality.

ST The state.

All The entire distinguished name.

Tag Description

Name The name of the security engine.

Help The help text for the security engine.

HashAlg A has algorithm supported by the security engine.

Tag Description

com.PureEdge.security.Certificate getDataByPath | 33
{
throw new UWIException("Could not locate SIGBUTTON1 node.");

}

theStatus = new IntHolder();

certList = buttonNode.getCertificateList(null, theStatus);

if (theStatus.value == SecurityUserStatusType.SUSTATUS_INPUT_REQUIRED)
{

throw new UWIException("User input required to sign form.");
}

certCount = certList.length;

encodedResult = new BooleanHolder;

for (i=0; i<certCount; i++)
{

signerCommonName = certList[i].getDataByPath("Subject: CN", false,
encodedResult);

if (signerCommonName.equals("PureEdge Server"))
{

correctCert = i;
break;

}
}

if (correctCert == -1)
{

throw new UWIException("Could not locate required certificate");
}

theSignature = buttonNode.signForm(certList[correctCert], null,
theStatus);

if (theStatus.value == SUSTATUS_INPUT_REQUIRED)
{

throw new UWIException("User input required to sign form.");
}

}

34 | getDataByPath com.PureEdge.security.Certificate

 The DTK Class | 35
The DTK Class
The DTK class encapsulates a method that initializes the ICS API.

■ You must import the following class to any .java files that call this DTK method:

com.PureEdge.DTK

■ Many of the methods used in the ICS API will throw a generic exception called a UWIException if
an error occurs. Import the following class to any .java files that call Form methods:

com.PureEdge.error.UWIException

■ Before using any Form methods you must first initialize the Form Library. Use the initialize
method to perform this initialization.

36 | initialize com.PureEdge.DTK
initialize

Description

This static method initializes the API. The parameters specify which version of the API your application
should bind with (see the Notes below for more details).

You must call this method before calling any of the other methods in the API.

Method

public static void initialize(

String progName,

String progVer,

String apiVer

) throws UWIException;

Parameters

Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Notes

initialize is a static method belonging to the DTK class, to use this method call:

DTK.initialize("progName", "progVer", "apiVer")

Expression Type Description

progName String The name of the application calling initialize. This name is
used to identify the application within the .ini file.

progVer String The version number of the application calling initialize. If
the .ini file has an entry for this version of the application,
the application will bind to the version of the API listed in
that entry.

apiVer String The version number of the API the application should use
by default. If the .ini file does not contain an entry for the
specific application, the application will bind to the API
specified by this parameter.

com.PureEdge.DTK initialize | 37
About Binding Your Applications to the API

When you initialize the API, the initialize method determines which version of the API to use based on
the parameters you pass it. This allows you to exercise a great deal of control over which version of the
API is used by your applications, and prevents the problems normally associated with common DLL
files (often referred to as “DLL hell”).

initialize uses a configuration file to determine which version of the API will bind to any application.
This allows multiple versions of the API to co-exist on your computer, and ensures that your
applications use the correct version of the API.

The configuration file is called PureEdgeAPI.ini and is installed with the API. Refer to the ICS API
Installation and Setup Guide for the exact location of the file.

Note: You should redistribute the PureEdgeAPI.ini file with any applications that use the API. See
the ICS API Installation and Setup Guide for more information about redistributing applications.

The configuration file contains a section for each application that might call the API, plus a default
“API” section. Each section contains a list of version numbers in the following format:

<version of application> = <folder containing appropriate version of API>

For example, the configuration file might look like this:

[API]
5.1.0 = 51
5.0.0 = 50

[CustomApplication]
1.1.0 = 51
1.0.0 = 50

In this case, the folder indicated on the right hand side of each statement is part of the relative path to the
API, and assumes the API was installed in the default folder. For example, under Windows “50” would
resolve to:

c:\WinNT\System32\PureEdge\50

You can also specify an absolute path by placing a drive letter before the path. For example, “c:\50”
would resolve to:

c:\50\

When you initialize the API, you include three parameters in the initialization call:

■ The name of your application (as it would appear in the configuration file).

■ The version of your application.

■ The version of the API that your application should bind to by default.

The initialization call will first check the configuration file to see if your application is listed. For
example, using the configuration file above, if you make an initialization call for “CustomApplication”
version “1.1.0”, then the application binds to the API in the “51” folder.

If your application is not listed in the configuration file, the initialization call uses the default version of
the API. For example, using the configuration file above, if you declare “5.1.0” as the default API, then
your application binds to the API in the “51” folder.

38 | initialize com.PureEdge.DTK
You can add your own entries to the configuration file before distributing it to your customers, or you
can rely on the default API entries.

Note: initialize was introduced for version 4.5.0 of the API. Binding does not work in this manner
for earlier versions of the API. Do not include earlier versions of the API in the configuration file.

Example

In the example below, the static method DTK.initialize initializes the ICS API for the application called
formSample.

private static void initialize() throws UWIException
{

DTK.initialize("formSample", "1.0.0", "5.1.0");
}

 The FormNodeP Class | 39
The FormNodeP Class

The FormNodeP class encapsulates methods that apply to particular forms.

■ Each node in a form, regardless of its level in the node hierarchy, is represented by a FormNodeP
object. For more information about the node structure of an XFDL form refer to the section called
“Overview of the Form Structure” on page 7.

■ Any application that makes calls to the FormNodeP methods must first import the following class:

com.PureEdge.xfdl.FormNodeP

■ Many of the methods in the ICS API will throw a generic exception called a UWIException if an
error occurs. Import the following class to any .java files that call methods from the ICS API.

com.PureEdge.error.UWIException

40 | addNamespace com.PureEdge.xfdl.FormNodeP
addNamespace

Description

This method adds a namespace declaration to the beginning of the form, and can be called from any
node.

Each namespace is defined in the form in the by a namespace declaration, as shown:

xmlns:xfdl="http://www.PureEdge.com/XFDL/6.0"
xmlns:custom="http://www.PureEdge.com/XFDL/Custom"

Each namespace declaration defines both a prefix and a URI for the namespace. In this sample, the
prefix for the XFDL namespace is xfdl and the URI is http://www.PureEdge.com/XFDL/6.0.

Tags within the form are assigned specific namespaces by using the defined prefix. For example, to
declare that an option was in the custom namespace you would use the prefix custom as shown:

<field sid="testField">
<custom:custom_option>value</custom:custom_option>

</field>

Method

public void addNamespace(

String theURI,

String thePrefix

) throws UWIException;

Parameters

Returns

Nothing or throws a generic exception (UWIException) if an error occurs.

Example

The following method uses addNamespace to add a custom namespace to a form. It then locates the
global item in the global page and adds a custom option to that item which marks the status of the form
as “Processed”.

Expression Type Description

theURI String The namespace URI. For example:

http://www.PureEdge.com/XFDL/6.0

thePrefix String The prefix for the namespace. For example, xfdl.

com.PureEdge.xfdl.FormNodeP addNamespace | 41
private static void addStatus(FormNodeP theNode) throws Exception
{
XFDL theXFDL;

/* Add the custom namespace to the form. */

theNode.addNamespace("http://www.PureEdge.com/XFDL/Custom", "custom");

/* Locate the global item in the global page so we can add a global
option. */

if (theNode = theNode.dereferenceEx(null, "global.global", 0,
UFL_ITEM_REFERENCE, null) == null)
throw new UWIException("Could not locate global.global node.");

/* Get the XFDL object so we can create a new node. */

if (theXFDL = (XFDL)IFXMan.lookupInterface(XFDL.XFDL_INTERFACE_NAME,
XFDL.XFDL_CURRENT_VERSION, 0, null, null)) == null)
throw new UWIException("Could not find XFDL interface.";

/* Create a new option node as a child of the global item. This node
is created in the custom namespace, called "Status", and given a
value of "Processed". */

if (theNode = theXFDL.create(theNode, UFL_APPEND_CHILD, null,
"Processed", null, "custom:Status") == null)
throw new UWIException("Could not create Status node.");

}

42 | createCell com.PureEdge.xfdl.FormNodeP
createCell

Description

Use this method to create a new cell item for a combobox, list, or popup. createCell adds one new cell
to a specific group. Note that this method can only assign a name to the new cell; it cannot set the cell’s
value. To set the value of a cell, you must use the setLiteralByRefEx method.

This method is called from a page level node, and creates the new cell in that page. Note that you cannot
call this method from the global page node.

Method

public FormNodeP createCell(

String theCellName,

String theGroupName

) throws UWIException;

Parameters

Returns

A FormNodeP containing the new cell or throws a generic exception (UWIException) if an error
occurs.

Example

This sample code makes two calls to the createCell method to add two new cells to the same group:

private static void addColorCells (FormNodeP theForm) throws Exception
{
FormNodeP theCell;
FormNodeP thePage;

/* The FormNodeP called thePage contains the page in which the cell will
be added. */

thePage = (theForm.getChildren()).getNext();

theCell = thePage.createCell("ORANGE_CELL","POPUP1_GROUP");

Expression Type Description

theCellName String The name of the new cell being created.

theGroupName String The name of the group option in which the new cell will be
added.

com.PureEdge.xfdl.FormNodeP createCell | 43
/* The call to setLiteralByRefEx assigns the value Orange to the new cell.
*/

theCell.setLiteralByRefEx(null, "value", 0, null, null, "Orange");
theCell = thePage.createCell("PURPLE_CELL ", "POPUP1_GROUP");
theCell.setLiteralByRefEx(null, "value", 0, null, null, "Purple");

}

44 | deleteSignature com.PureEdge.xfdl.FormNodeP
deleteSignature

Description

This method acts on the root node of a form (FormNodeP object) to delete a digital signature
represented by the signatureItem within the form. Several criteria must be met before this is allowed.
None of the following should be locked by another signature: the signature, its descendants, the
associated signature button, and its signer option. If these criteria are met, then the signature’s locks are
removed, and the signature item is deleted. Then, the signer of the associated signature button is set to
empty ("").

Method

public void deleteSignature(

FormNodeP signatureItem

) throws UWIException;

Parameters

Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Example

In the following example, dereference is used to locate the signature node. deleteSignature is then
used to delete the signature from the form.

private static void deleteSignature(formNodeP theForm) throws UWIException
{
formNodeP tempNode;
boolean layoutinfo;

/* Locate the signature node. */

If((tempNode = theForm.dereferenceEx(null, "PAGE1.SIGITEM2", 0,
formNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not locate SIGITEM2 node");

}

/* Check to see if the signature contains a layoutinfo option. Set
layoutinfo to true if it does or false if it does not. */

Expression Type Description

signatureItem FormNodeP The signature to delete.

com.PureEdge.xfdl.FormNodeP deleteSignature | 45
layoutinfo = true;

If(tempNode.dereferenceEx(null, "layoutinfo", 0,
formNodeP.UFL_OPTION_REFERENCE, null) == null)
layoutinfo = false;

/* Delete the signature. */

theForm.deleteSignature(tempNode);

/* If the signature contained a layoutinfo option, destroy the
remaining nodes. */

if (layoutinfo == true)
{

tempNode.Destroy();
}

}

46 | dereferenceEx com.PureEdge.xfdl.FormNodeP
dereferenceEx

Description

This method locates a particular FormNodeP on the basis of a reference string. The node that this
method operates on is used as the starting point of the search.

Method

public FormNodeP dereferenceEx(

String theScheme,

String theReference,

int theReferenceCode,

int referenceType,

FormNodeP theNSNode

) throws UWIException;

Parameters

Expression Type Description

theScheme String Reserved. This must be null.

theReference String The reference string.

theReferenceCode int Reserved. This must be 0.

referenceType int One of the following constants:

FormNodeP.UFL_OPTION_REFERENCE
FormNodeP.UFL_ITEM_REFERENCE
FormNodeP.UFL_PAGE_REFERENCE
FormNodeP.UFL_ARRAY_REFERENCE

If it is an option or argument reference, bitwise OR (|) with
one of:

FormNodeP.UFL_SEARCH
FormNodeP.UFL_SEARCH_AND_CREATE

theNSNode FormNodeP A node that is used to resolve the namespaces in
theReference parameter (see the note about namespace
below). Use null if the node that this method is operating on
has inherited the necessary namespaces.

com.PureEdge.xfdl.FormNodeP dereferenceEx | 47
Returns

The FormNodeP defined by the reference string or null if the referenced node does not exist and
UFL_SEARCH_AND_CREATE is not specified. On error, the function throws a UWIException
object that describes the problem.

Notes

FormNodeP

Before you decide which FormNodeP to use as the specified object node, you should understand the
following:

1. The FormNodeP supplied can never be more than one level in the hierarchy above the starting
point of the reference string. For example, if the reference string begins with an option, then the
FormNodeP can be no higher in the hierarchy than an item.

2. If the FormNodeP is at the same level or lower in the hierarchy than the starting point of the
reference string, the function will attempt to locate a common ancestor. The function will locate the
ancestor of the FormNodeP that is one level in the hierarchy above the starting point of the
reference string. The function will then attempt to follow the reference string back down through
the hierarchy. If the reference string cannot be followed from the located ancestor (for example, if
the ancestor is not common to both the FormNodeP and the reference string), the function will fail.

For example, given a FormNodeP that represents field_1 and a reference of field_2, the function
will access the page node above field_1, and will then try to locate field_2 below that node. If the
two fields were not on the same page, the function would fail.

Creating a Reference String

For more information about creating a reference string, see “References” on page 8.

Determining Namespace

In some cases, you may want to use the dereferenceEx method to locate a node that does not have a
globally defined namespace. For example, consider the following form:

<label sid="Label1">
<value>Field1.processing:myValue</value>

</label>
<field sid="Field1" xmlns:processing="URI">

<value></value>
<processing:myValue>10<processing:myValue>

</field>

In this form, the processing namespace is declared in the Field1 node. Any elements within Field1 will
understand that namespace; however, elements outside of the scope of Field1 will not.

In cases like this, you will often start your search at a node that does not understand the namespace of
the node you are trying to locate. For example, you might want to locate the node referenced in the
value of Label1. In this case, you would first locate the Label1 value node and get its literal. Then, from
the Label1 value node, you would attempt to locate the processing:myValue node as shown:

Label1Node.dereferenceEx(null, "Field1.processing:myValue", 0,

48 | dereferenceEx com.PureEdge.xfdl.FormNodeP
FormNodeP.UFL_OPTION_REFERENCE, null)

In this example, the dereferenceEx method would fail. The method cannot properly resolve the
processing namespace because this namespace is not defined for the Label1 value node. To correct this,
you must also provide a node that understands the processing namespace (in this case, any node in the
scope of Field1) as the last parameter in the method:

Label1Node.dereferenceEx(null, "Field1.processing:myValue", 0,
FormNodeP.UFL_OPTION_REFERENCE, Field1Node)

Example

The following sample code uses dereferenceEx to locate the node representing the field called
colorfield. It then uses detLiteralByRef to change the value displayed by the field to Purple.

private static void changeColorField() throws Exception
{
FormNodeP tempNode;

if ((tempNode = theForm.dereferenceEx(null, "PAGE1.COLORFIELD", 0,
FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not locate COLORLABEL node.");

}
tempNode.setLiteralByRefEx(null, "PAGE1.COLORFIELD.VALUE", 0,

null, null, "Purple");

/* additional code removed */
}

com.PureEdge.xfdl.FormNodeP destroy | 49
destroy

Description

This method destroys the specified object node, and all children of that FormNodeP. Destroying the
root node of a form destroys the entire form and frees that memory.

Method

public void destroy() throws UWIException;

Parameters

There are no parameters for this method.

Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Notes

Digital Signatures

It is illegal to destroy a signed object, except in the case of destroying an entire signed form. Destroying
a signed object breaks the digital signature, resulting in an exception.

Example

In the following example, dereferenceEx is used to locate a particular node. destroy is then used to
remove that node from the structure.

private static void removeRadios() throws UWIException
{
FormNodeP tempNode;

if ((tempNode = theForm.dereferenceEx(null, "PAGE1.MALERADIO", 0,
FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not locate MALERADIO node.");

}

tempNode.destroy();

/* additional code removed */
}

50 | duplicate com.PureEdge.xfdl.FormNodeP
duplicate

Description

This method makes a copy of the specified object node. The duplicate node can be attached to any other
node as either a sibling or a child, or can be stored as a separate node structure (that is, as a separate
form). The new node can also be assigned a new identifier, as indicated by the theIdentifier parameter.
All of the properties of the original node are duplicated, including any children and any namespace
settings.

Note: If you duplicate a node that is in a non-XFDL namespace, the namespace is copied as part of
the duplicated node, but is not set globally.

Method

public FormNodeP duplicate(

FormNodeP baseNode,

int where,

String theIdentifier

) throws UWIException;

Parameters

Expression Type Description

baseNode FormNodeP The FormNodeP to which the duplicated node will be
attached. If null, the specified object node is used as the
baseNode.

where int A constant that describes the location relative to the supplied
baseNode in which the new node should be placed:

XFDL.UFL_APPEND_CHILD — adds the new node as the
last child of the baseNode.

XFDL.UFL_AFTER_SIBLING — adds the new node as a
sibling of the baseNode, placing it immediately after that node
in the form structure.

XFDL.UFL_BEFORE_SIBLING — adds the new node as a
sibling of the baseNode, placing it immediately before that
node in the form structure.

XFDL.UFL_ORPHAN — copies the node to a new form
structure, effectively creating a separate form.

com.PureEdge.xfdl.FormNodeP duplicate | 51
Returns

The duplicate node or throws a generic exception (UWIException) if an error occurs.

Example

In the following example, dereferenceEx is used to locate a specific node. duplicate is then used to
duplicate that node.

private static void createMailing()throws UWIException
{
FormNodeP tempNode;
FormNodeP duplicateNode;

if ((tempNode = theForm.dereferenceEx(null, "PAGE1.ADDRESSFIELD",
0, FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not locate ADDRESSFIELD node.");

}

if ((duplicateNode = tempNode.duplicate(tempNode,
XFDL.UFL_AFTER_SIBLING, "MAILINGFIELD")) == null)

{
throw new UWIException("Could not duplicate ADDRESSFIELD node.");

}

}

theIdentifier String A new identifier for this node. If null, the same identifier as the
copied object’s is used.

Expression Type Description

52 | encloseFile com.PureEdge.xfdl.FormNodeP
encloseFile

Description

This method will enclose a file in a form. The file must be accessible on the local computer. The
FormNodeP may refer to either a page node or an item node. If the FormNodeP is a page node, the
method creates a data item in that page to contain the enclosure. If the FormNodeP is an item node, it
must be a data item, and the method encloses the file in that node.

The file is enclosed using base64-gzip encoding.

Method

public FormNodeP encloseFile(

String theFile,

String mimeType,

String dataGroup,

String identifier

) throws UWIException;

Parameters

Returns

The item FormNodeP that contains the enclosure or throws a generic exception (UWIException) if an
error occurs.

Example

The following example demonstrates how to use encloseFile to enclose a graphics file in a form. First,
dereferenceEx is used to locate the node for the first page. Then, depending on the gender, encloseFile

Expression Type Description

theFile String This is the path to the file on the local drive that will be
enclosed in the form.

mimeType String This is the MIME type of the file. If null, the library will attempt
to find a suitable MIME type for the file.

dataGroup String This is the datagroup to which this file should belong. If null,
the datagroup option (if it exists) is not changed.

identifier String This is the identifier to assign to the new data item if one is
created. If null, the current name is used or a unique name is
automatically generated for the new data item.

com.PureEdge.xfdl.FormNodeP encloseFile | 53
is called to enclose one of two possible image files. Because the subject node is a page node,
encloseFile creates a new data node in which to store the image file.

private static void enclosePic(String theGender) throws Exception
{

FormNodePtempNode;

if ((tempNode = theForm.dereferenceEx(null, "PAGE1", 0,
FormNodeP.UFL_PAGE_REFERENCE, null)) == null)
throw new Exception("Could not find PAGE1.");

/* The following logic detemines whether the gender is "male" or "female".
*/

if (theGender.equals("male"))
{

if ((tempNode = tempNode.encloseFile("male.jpg", "image/jpeg",
null, "PICDATA")) == null)
throw new Exception("Could not enclose image file.");

}
else
{

/* This call to encloseFile is similar to the previous one. The only
difference is that it specifies a different image. */

if ((tempNode = tempNode.encloseFile("female.jpg", "image/jpeg",
null, "PICDATA")) == null)
throw new Exception("Could not enclose image file.");

}
}

54 | encloseInstance com.PureEdge.xfdl.FormNodeP
encloseInstance

Description

This method inserts information into the XML model. The method can insert either an entire instance or
a portion of an instance, and can either append the new information or overwrite existing information.

Call this method on the root node of the form or an XML instance node.

Function

READING A FILE:

public void encloseInstance(

String theInstanceID,

String theFile,

int theFlags,

String theScheme,

String theRootReference,

FormNodeP theNSNode,

boolean replaceNode

) throws UWIException;

READING A STREAM:

public void encloseInstance(

String theInstanceID,

java.io.InputStream theStream,

int theFlags,

String theScheme,

String theRootReference,

FormNodeP theNSNode,

boolean replaceNode

) throws UWIException;

com.PureEdge.xfdl.FormNodeP encloseInstance | 55
Parameters

Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Example

The following example shows a method that takes the root node of a form and inserts an XML instance
called “data”.

private static void updateDataInstance(FormNodeP theForm) throws Exception
{

theForm.encloseInstance("data",
"c:\Instance Files\Personnel\tempdata.dat", 0, null, null, null,
true);

}

Expression Type Description

theInstanceID String The ID of the instance to work with. This is defined by
the id attribute of that node.

If the method is acting on the instance node you want
to work with, set this parameter to null.

theFile String The path to the file on the local drive that contains the
XML instance.

theStream java.io.InputStream The input stream that contains the instance data.

theFlags int Reserved. This must be 0.

theScheme String Reserved. Must be null.

theRoot
Reference

String A reference to node you want to replace or append
children to. This reference is relative to the instance
node.

Use null to default to the instance node.

theNSNode FormNodeP A node that inherits the namespaces used in the
reference. This node defines the namespaces for the
method. Use null if the node that this method is
operating on has inherited the necessary namespaces.

replaceNode boolean If true, the node specified by theRootReference is
replaced with data. If false, the data is appended as
the last child of theRootReference node.

56 | extractFile com.PureEdge.xfdl.FormNodeP
extractFile

Description

This method will extract an enclosure contained in the specified object node and save it to a file that is
accessible to the local computer. Note that this method does not remove the enclosure from the form.

Method

public void extractFile(

String thePath

) throws UWIException;

Parameters

Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Example

In the following example, dereferenceEx is used to locate a specific data item node. extractFile is then
used to write the image data to the local drive.

private static void exportImage(FormNodeP theForm) throws Exception
{
FormNodeP tempNode;

if ((tempNode = theForm.dereferenceEx(null, "PAGE1.LOGODATA", 0,
FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not find LOGODATA node.");

}

tempNode.extractFile("logo.jpg");
}

Expression Type Description

thePath String This is a path showing where to store the file on the local
drive. Any existing file will be overwritten.

com.PureEdge.xfdl.FormNodeP extractInstance | 57
extractInstance

Description

This function copies an XML instance from a form’s XML model to a file. Note that this function does
not remove the instance from the form.

Call this method on the root node of the form or an XML instance node.

Function

WRITING TO A FILE:

public void extractInstance(

String theInstanceID,

FormNodeP theFilter,

String includedNamespaces,

String theFile,

int theFlags,

String theScheme,

String theRootReference,

FormNodeP theNSNode

) throws UWIException;

WRITING TO A STREAM:

public void extractInstance(

String theInstanceID,

FormNodeP theFilter,

String includedNamespaces,

java.io.OutputStream theStream,

int theFlags,

String theScheme,

String theRootReference,

FormNodeP theNSNode

) throws UWIException;

58 | extractInstance com.PureEdge.xfdl.FormNodeP
Parameters

Expression Type Description

theInstanceID String The ID of the instance node to extract. This is defined
by the id attribute of that node.

If theNode parameter is the instance node you want to
extract, set this parameter to null.

theFilter FormNodeP An item in the form, such as a button or cell, that
defines the filtering for the instance. Filtering of
elements is controlled by the transmit filters in the item.
If all of an element’s bound options are filtered out, then
the element is also filtered out. Use null for no filtering.

included
Namespaces

String If set to null, a definition for each inherited namespace
is added to the root node of the instance when it is
extracted.

To filter the namespaces, list the prefixes for those
namespaces you want to include in the instance,
separated by spaces.

For example, to include only the XFDL and Custom
namespaces, you would set this parameter to:

XFDL Custom

Use #default to indicate the default namespace for the
instance.

Use an empty string ("") to include only those
namespaces that are used by the instance.

Namespaces that are used in the instance are always
included, regardless of this setting.

theFile String The path to the file on the local drive that will contain
the XML instance.

theStream java.io.OutputStream The output stream to use.

theFlags int Reserved. This must be 0.

theScheme String Reserved. Must be null.

theRoot
Reference

String A reference to the root node you want to extract. This
reference is relative to the instance node.

Use null to default to the instance node.

theNSNode FormNodeP A node that inherits the namespaces used in the
reference. This node defines the namespaces for the
method. Use null if the node that this method is
operating on has inherited the necessary namespaces.

com.PureEdge.xfdl.FormNodeP extractInstance | 59
Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Example

The following example shows a method that takes the root node of a form and extracts an XML instance
called “data”.

private static void updateDataInstance(formNodeP theForm)
{

theForm.extractInstance("data", null, null,
"c:\Instance Files\Personnel\tempdata.dat", 0, null, null, null);

}

60 | getAttribute com.PureEdge.xfdl.FormNodeP
getAttribute

Description

This method returns the value of a specific attribute for a node. For example, the following XFDL
represents a MIME data node:

<mimedata encoding="base64"></mimedata>

In this sample, you could use getAttribute to obtain the value of the encoding attribute, which would be
“base64”.

Method

public String getAttribute(

String theNamespaceURI,

String theAttribute

) throws UWIException;

Parameters

Returns

The attribute’s value or throws a generic exception (UWIException) if an error occurs. If the attribute is
empty or does not exist, the method returns null.

Namespaces

If you refer to an attribute with a namespace prefix, getAttribute first looks for a complete match,
including both prefix and attribute name. If it does not find such a match, it will look for a matching
attribute name that has no prefix but whose containing element has the same namespace.

For example, assume that the custom namespace and the test namespace both resolve to the same URI.
In the following case, looking for the id attribute would locate the second attribute, since it has an
explicit namespace declaration:

<a xmlns:custom="ABC" xmlns:test="ABC">
<custom:myElement id="1" test:id="2">

Expression Type Description

theNamespace
URI

String The namespace URI for the attribute. For example:

http://www.PureEdge.com/XFDL/6.0

theAttribute String The local name of the attribute. For example, compute,
encoding, and so on.

com.PureEdge.xfdl.FormNodeP getAttribute | 61

However, in the next case, the id attribute does not have an explicit namespace declaration. Instead, it
inherits the custom namespace. However, since the inherited namespace resolves to the same URI, the
id attribute is still located:

<custom:myElement id="1">

Example

The following example shows a shortcut method that gets the value of the encoding attribute for a
specific node. A node is passed to the method, which then uses getAttribute to get the value of
encoding attribute. This sample method assumes that the attribute is always in the XFDL namespace.

private static String getEncodingType(FormNodeP theNode) throws Exception
{
String theEncodingType;

theCompute = theNode.getAttribute(
"http://www.PureEdge.com/XFDL/6.0", "encoding")

return(theEncodingType);
}

62 | getAttributeList com.PureEdge.xfdl.FormNodeP
getAttributeList

Description

This method returns a list of attributes and a list of corresponding namespaces for a given node. For
example, the following XFDL represents a value node:

<value compute="Field1.value"></value>

In this sample, getAttributeList would return a list of attributes that contained compute and a list of
namespaces that contained http://www.PureEdge.com/xfdl/6.0.

Method

public void getAttributeList(

StringListHolder theNamespaces,

StringListHolder theAttributes

) throws UWIException;

Parameters

Returns

Nothing or throws a generic exception (UWIException) if an error occurs.

Example

The following method uses getAttributeList to retrieve the list of a node’s attributes. It then searches
through the list looking for a compute attribute. When if locates a compute attribute, it uses
removeAttribute to remove the compute from the node.

private static void stripComputes(FormNodeP theNode) throws Exception
{
int counter;
StringListHolder URIList = new StringListHolder[];

Expression Type Description

theNamespaces StringListHolder A list of namespace URIs. For example:

http://www.PureEdge.com/XFDL/6.0

Each URI corresponds to the attribute in the same
position in the attribute list.

theAttributes StringListHolder A list of attributes. For example, compute, encoding,
and so on. Each attribute corresponds to a URI in the
same position in the namespace list.

com.PureEdge.xfdl.FormNodeP getAttributeList | 63
StringListHolder attributeList = new StringListHolder[];

/* Retrieve the list of attributes for the supplied node. */

theNode.getAttributeList(URIList, attributeList);

/* Step through the list searching for the compute attribute. If the
compute attributes is found, delete it. */

for (counter = 0; counter < attributeList.value.length; counter++)
{

if (attributeList.value[counter].equals("compute"))
{

theNode.removeAttribute(URIList.value[counter],
attributeList.value[counter]);

}
}

}

64 | getCertificateList com.PureEdge.xfdl.FormNodeP
getCertificateList

Description

This function locates all available certificates that can be used by a particular signature button. The
certificates are filtered according to the signature engine defined in the signFormat option of the button,
and according to the filters defined in the signdetails option of the button.

Method

public Certificate [] getCertificateList(

String theFilters,

IntHolder theStatus,

) throws UWIException;

Parameters

Returns

An array containing the list of certificates objects.

Expression Type Description

theFilters String A string that is used to filter the subject attribute of the certificate. If
the subject attribute include this substring, then that certificate will
be listed.

For example, you might filter against a name, such as “John Doe”,
or an email address, such as “jdoe@pureedge.com”.

Note that this filter is in addition to the other filters defined in the
signdetails option of the button.

If null is passed, then only the filters in the signdetails option are
used.

theStatus IntHolder This is a status flag that reports whether the operation was
successful. Possible values are:

SecurityUserStatusType.SUSTATUS_OK — the operation was
successful.

SecurityUserStatusType.SUSTATUS_CANCELLED — the
operation was cancelled by the user.

SecurityUserStatusType.SUSTATUS_INPUT_REQUIRED — the
operation required user input, but could not receive it (for example,
it was run on a server with no user).

com.PureEdge.xfdl.FormNodeP getCertificateList | 65
Example

The following example uses dereferenceEx to locate a specific signature button node.
getCertificateList is then used to get a list of valid certificates for that button. Finally, signForm signs
the button using the first certificate in the list.

private static void createSignature(FormNodeP theForm)throws Exception
{
FormNodeP buttonNode;
IntHolder theStatus;
Signature theSignature;
Certificate [] certList;

if ((buttonNode = theForm.dereferenceEx(null, "PAGE1.SIGBUTTON1",
0, FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not locate SIGBUTTON1 node.");

}

theStatus = new IntHolder();

certList = buttonNode.getCertificateList(null, theStatus);

if (theStatus.value == securityUserStatusType.SUSTATUS_INPUT_REQUIRED)
{

throw new UWIException("User input required to sign form.");
}

theSignature = buttonNode.signForm(certList[0], null, theStatus);

if (theStatus.value == securityUserStatusType.SUSTATUS_INPUT_REQUIRED)
{

throw new UWIException("User input required to sign form.");
}

}

66 | getChildren com.PureEdge.xfdl.FormNodeP
getChildren

Description

This method, along with getParent, is used to traverse vertically along the form hierarchy. getChildren
returns the first child node of the specified object node. If the node has no children null is returned. All
children of a particular FormNodeP can be traversed using an iterator, such as a while loop, in
combination with getNext.

Method

public FormNodeP getChildren() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The FormNodeP that represents the child or null if no such child exists. It will throw a generic
exception (UWIException) if an error occurs.

Example

In the following example the root node of a form is represented by a FormNodeP called theForm. The
method dereferenceEx is used to retrieve an item from the form called PAGE1.NAMELABEL.

getChildren returns the first child node of PAGE1.NAMELABEL that is PAGE1.NAMELABEL.value.

public class getFunctions
{

■ theForm is a reference to the root node of a form

■ tempNode is a reference to the node returned from the method dereference

■ childNode is a reference to the child node of tempNode

private static FormNodeP theForm;
private static FormNodeP childNode;

/* Additional Code Removed */

public static void main(String argv[])
{
FormNodeP tempNode;

/* Additional Code Removed */

if ((tempNode = theForm.dereferenceEx(null, "PAGE1.NAMELABEL",
0,FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

com.PureEdge.xfdl.FormNodeP getChildren | 67
{
throw new UWIException("Could not locate Name label node.");

}

childNode = tempNode.getChildren();
childNode.setLiteralEx(null, "The value option is the first ");

/* Additional Code Removed */
}

}

68 | getInfoEx com.PureEdge.xfdl.FormNodeP
getInfoEx

Description

This method retrieves information about the specified object node. If you do not want information about
a particular property, simply set it to null.

Method

public void getInfoEx(

StringHolder theType,

StringHolder theLiteral,

StringHolder theFormula,

StringHolder theIdentifier,

String theCharSet)

throws UWIException;

Parameters

Expression Type Description

theType StringHolder A StringHolder that will store the type of the specified object
node.

If the type is empty or does not exist, the StringHolder is set
to null.

theLiteral StringHolder A StringHolder that will store the literal of the specified object
node.

If the literal is empty or does not exist, the StringHolder is set
to null.

theFormula StringHolder A StringHolder that will store the formula of the specified
object node.

If the formula is empty or does not exist, the StringHolder is
set to null.

theIdentifier StringHolder A StringHolder that will store the identifier of the specified
object node.

If the identifier is empty or does not exist, the StringHolder is
set to null.

theCharSet String The character set you want to use to view the results. Use
null or Unicode for Unicode. Use Symbol for Symbol.

com.PureEdge.xfdl.FormNodeP getInfoEx | 69
Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Notes

If you are getting information about a node that is not in the XFDL namespace, GetInfoEx may return
values that include namespace prefixes as follows:

■ Any item node in a non-XFDL namespace will return a Type that includes a namespace prefix. For
example, myNamespace:Field1.

■ Any option node in a non-XFDL namespace will return an Identifier that includes a namespace
prefix. For example, myNamespace:value.

Example

In the following example, dereferenceEx is used to locate a specific node. getInfoEx is then used to get
the four values from that node. The four values are then printed out.

private static void checkAgeFieldNode(FormNodeP theForm) throws Exception
{
FormNodeP tempNode;
StringHolder theType = new StringHolder();
StringHolder theLiteral = new StringHolder();
StringHolder theFormula = new StringHolder();
StringHolder theIdentifier = new StringHolder();

if ((tempNode = theForm.dereferenceEx(null, "PAGE1.AGEFIELD", 0,
FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not locate AGEFIELD node.");

}

tempNode.getInfoEx(theType, theLiteral, theFormula, theIdentifier,
null);

/* Print out the information. */

System.out.println("Type: " + theType.value);
System.out.println("Literal: " + theLiteral.value);
System.out.println("Formula: " + theFormula.value);
System.out.println("Identifier: " + theIdentifier.value);

}

70 | getLiteralByRefEx com.PureEdge.xfdl.FormNodeP
getLiteralByRefEx

Description

This method finds a particular FormNodeP on the basis of a reference string. The specified object is
used as the starting node of the search unless an absolute reference is provided. Once the FormNodeP
is found, its literal is retrieved.

Method

public String getLiteralByRefEx(

String theScheme,

String theReference,

int theReferenceCode

String theCharSet,

FormNodeP theNSNode;

) throws UWIException;

Parameters

Returns

The literal string or throws a generic exception (UWIException) if an error occurs. If the literal is
empty or does not exist, the method returns null.

Notes

This method is a shortcut method and is equivalent to performing the following on a FormNodeP
object:

aNode.dereferenceEx(theScheme, theReference, theReferenceCode,

Expression Type Description

theScheme String Reserved. This must be null.

theReference String The reference string.

theReferenceCode int Reserved. Must be 0.

theCharSet String The character set you want to use to view the literal string.
Use null or Unicode for Unicode. Use Symbol for Symbol.

theNSNode FormNodeP A node that is used to resolve the namespaces in
theReference parameter (see the note about namespace
below). Use null if the node that this method is operating on
has inherited the necessary namespaces.

com.PureEdge.xfdl.FormNodeP getLiteralByRefEx | 71
UFL_OPTION_REFERENCE | UFL_SEARCH_AND_CREATE,
theNamespaceNode).getLiteralEx(aCharSet);

FormNodeP

Before you decide which FormNodeP to use as the specified object node, be sure you understand the
following:

1. The FormNodeP supplied can never be more than one level in the hierarchy above the starting
point of the reference string. For example, if the reference string begins with an option, then the
FormNodeP can be no higher in the hierarchy than an item.

2. If the FormNodeP is at the same level or lower in the hierarchy than the starting point of the
reference string, the method will attempt to locate a common ancestor. The method will locate the
ancestor of the FormNodeP that is one level in the hierarchy above the starting point of the
reference string. The method will then attempt to follow the reference string back down through the
hierarchy. If the reference string cannot be followed from the located ancestor (for example, if the
ancestor is not common to both the FormNodeP and the reference string), the method will fail.

For example, given a FormNodeP that represents “field_1” and a reference of “field_2”, the
method will access the “page” node above “field_1”, and will then try to locate “field_2” below
that node. If the two fields are not on the same page, the method will fail.

3. If the FormNodeP is at the argument level, the search will not start from that point. Instead, the
nearest ancestor that is at the option level will be used as the starting point for the search.

Creating a Reference String

For more information about creating a reference string, see “References” on page 8.

Determining Namespace

In some cases, you may want to use the getLiteralByRefEx method to get the literal of a node that does
not have a globally defined namespace. For example, consider the following form:

<label sid="Label1">
<value>Field1.processing:myValue</value>

</label>
<field sid="Field1" xmlns:processing="URI">

<value></value>
<processing:myValue>10<processing:myValue>

</field>

In this form, the processing namespace is declared in the Field1 node. Any elements within Field1 will
understand that namespace; however, elements outside of the scope of Field1 will not.

In cases like this, you will often start your search at a node that does not understand the namespace of
the node you are trying to locate. For example, you might want to locate the node referenced in the
value of Label1. In this case, you would first locate the Label1 value node and get its literal. Then, from
the Label1 value node, you would attempt to locate the processing:myValue node as shown:

Label1Node.getLiteralByRefEx(null, "Field1.processing:myValue", 0,
null, null)

In this example, the getLiteralByRefEx method would fail. The method cannot properly resolve the
processing namespace because this namespace is not defined for the Label1 value node. To correct this,

72 | getLiteralByRefEx com.PureEdge.xfdl.FormNodeP
you must also provide a node that understands the processing namespace (in this case, any node in the
scope of Field1) as the last parameter in the method:

Label1Node.getLiteralByRefEx(null, "Field1.processing:myValue", 0,
null, Field1Node)

Example

The following example uses getLiteralByRefEx to get the literal value from a specific node. That value
is then converted into an integer.

private static int getCurrentDay() throws Exception
{
String temp;

temp = theForm.getLiteralByRefEx(null, "PAGE1.CURRENTDAY.value", 0,
null, null);

/* If a literal value was returned, convert it into an integer value;
otherwise, indicate that no value was entered into the field and throw
an exception. */

if (temp.length() > 0)
{

return Integer.parseInt(temp);
}
else
{

throw new UWIException("The current day was not entered.");
}

}

com.PureEdge.xfdl.FormNodeP getLiteralEx | 73
getLiteralEx

Description

This method retrieves the literal of a node. The literal is returned in the specified character set.

Method

public String getLiteralEx(

String theCharSet

) throws UWIException;

Parameters

Returns

A string containing the literal of the node or throws a generic exception (UWIException) if an error
occurs. If the literal is empty or does not exist, the method returns null.

Example

The following example uses dereferenceEx to locate a specific node. getLiteralEx is then used to get
the literal value for that node.

private static void getGender() throws UWIException
{
FormNodeP tempNode;
String temp;

if ((tempNode = theForm.dereferenceEx(null, "PAGE1.MALERADIO.value",
0, FormNodeP.UFL_OPTION_REFERENCE | FormNodeP.UFL_SEARCH, null)) ==
null)

{
throw new UWIException("Could not locate MALERADIO value node.");

}

temp = tempNode.getLiteralEx(null);

/* additional code removed */
}

Expression Type Description

theCharSet String The character set you want to use to view the literal string.
Use null or Unicode for Unicode. Use Symbol for Symbol.

74 | getLocalName com.PureEdge.xfdl.FormNodeP
getLocalName

Description

This method returns the local name of a given node. The local name is determined by the XML tag that
represents that node. For example, examine the following XML fragment:

<page sid="PAGE1">
<global sid="global"></global>
<field sid="testField">

<value>Hello</value>
<bgcolor>

<ae>120</ae>
<ae>120</ae>
<ae>120</ae>

<bgcolor>
</field>

</page>

In this sample, the name of the page node is “page”, the name of the field node is “field”, the name of
the value node is “value”, and the name of the bgcolor node is “bgcolor”. The bgcolor node is also the
parent of three array element nodes, all of which are named “ae”.

Note that the local name does not include any namespace prefix that might exist. For example, you
might have a custom option in a different namespace as shown:

<field sid="testField">
<custom:my_option>value</custom:my_option>

</field>

In this case, the local name of the custom option is returned without the prefix, resulting in
“my_option”.

Method

public String getLocalName() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The name of the node or throws a generic exception (UWIException) if an error occurs.

Example

The following method takes the root node of the form and uses recursion to step through each node in
the form. The method uses isXFDL and getLocalName to locate all label nodes in the XFDL
namespace and changes the background color of those nodes to green.

com.PureEdge.xfdl.FormNodeP getLocalName | 75
private static void changeLabelColor(FormNodeP theNode) throws Exception
{
FormNodeP tempNode, bgcolorNode;

/* Use recursion to step through each node in the form. */

tempNode = theNode.getChildren();
while(tempNode != null)
{

changeLabelColor(tempNode);
tempNode = tempNode.getNext()

}

/* If the node is a label in the XFDL namespace, locate the
background color child node and change its value to green. */

if ((tempNode.isXFDL()) && (tempNode.getLocalName.equals("label")))
{

if ((bgcolorNode = tempNode.dereferenceEx(null, "bgcolor", 0,
UFL_OPTION_REFERENCE | UFL_SEARCH, null)) == null)
throw new UWIException ("Could not locate bgcolor node.");

bgcolorNode.setLiteralEx(null, "Green");
}

}

76 | getNamespaceURI com.PureEdge.xfdl.FormNodeP
getNamespaceURI

Description

This method returns the namespace URI for the node.

Each namespace is defined in the form by a namespace declaration, as shown:

xmlns:xfdl="http://www.PureEdge.com/XFDL/6.0"
xmlns:custom="http://www.PureEdge.com/Custom"

Each namespace declaration defines both a prefix and a URI for the namespace. In this sample, the
prefix for the XFDL namespace is xfdl and the URI is http://www.PureEdge.com/XFDL/6.0.

Tags within the form are assigned specific namespaces by using the defined prefix. For example, to
declare that an option was in the custom namespace you would use the prefix custom as shown:

<field sid="testField">
<custom:custom_option>value</custom:custom_option>

</field>

Method

public String getNamespaceURI() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The namespace URI or throws a generic exception (UWIException) if an error occurs.

Example

The following method uses recursion to traverse the entire node structure and destroys all nodes that are
in the custom namespace identified by the following URI: http://www.PureEdge.com/Custom. This
method assumes that you are passing in the root node of the form.

private static void deleteCustomInfo(FormNodeP theNode) throws Exception
{
FormNodeP tempNode, tempNode2;

/* Use recursion to step through each node of the form. */

tempNode = theNode.getChildren();
while(tempNode != null)
{

tempNode2 = tempNode.getNext();
deleteCustomInfo(tempNode);
tempNode = tempNode2;

com.PureEdge.xfdl.FormNodeP getNamespaceURI | 77
}

/* If the node belongs to the custom namespace, delete it. */

if (theNode.getNamespaceURI().equals
("http://www.PureEdge.com/Custom"))
theNode.destroy();

}

78 | getNamespaceURIFromPrefix com.PureEdge.xfdl.FormNodeP
getNamespaceURIFromPrefix

Description

This method returns the namespace URI that corresponds to a specific prefix. You can call this method
from any node in the form, as long as that node either declares or inherits the namespace in question.

Each namespace is defined in the form by a namespace declaration, as shown:

xmlns:xfdl="http://www.PureEdge.com/XFDL/6.0"
xmlns:custom="http://www.PureEdge.com/Custom"

Each namespace declaration defines both a prefix and a URI for the namespace. In this sample, the
prefix for the XFDL namespace is xfdl and the URI is http://www.PureEdge.com/XFDL/6.0.

Tags within the form are assigned specific namespaces by using the defined prefix. For example, to
declare that an option was in the custom namespace you would use the prefix custom as shown:

<field sid="testField">
<custom:custom_option>value</custom:custom_option>

</field>

Method

public String getNamespaceURIFromPrefix(

String thePrefix

) throws UWIException;

Parameters

Returns

The namespace URI or throws a generic exception (UWIException) if an error occurs. If the
namespace URI is not declared, the result is null.

Example

The following method copies a custom option from one form to another. The method assumes that you
know the prefix for the custom namespace, but not the URI. First, the method uses
getNamespaceURIFromPrefix to get the URI for the custom namespace in the first form. Next, it adds
that namespace to the second form as a globally available namespace. It then locates the custom node in
the first form and the global item node in the second form. Finally, it copies the custom node to the
second form as a child of the global item node.

Expression Type Description

thePrefix String The namespace prefix. For example, xfdl.

com.PureEdge.xfdl.FormNodeP getNamespaceURIFromPrefix | 79
private static void copyCustomInfo(FormNodeP form1, FormNodeP form2)
throws Exception
{

String theURI;
FormNodeP tempNode, duplicateNode, globalNode;

/* Get the URI for the custom namespace in form 1. If the URI is null,
throw an error. */

if ((theURI = form1.getNamespaceURIFromPrefix("custom")) == null)
throw new UWIException("Custom namespace not declared in form.");

/* Create a custom namespace in form 2 using that URI. */

form2.addNamespace(theURI, "custom");

/* Locate the custom Status node in form 1. */

if ((tempNode = form1.dereferenceEx(null,
"global.global.custom:Status", 0, UFL_OPTION_REFERENCE |
UFL_SEARCH, null)) == null)
throw new UWIException("Could not find custom Status node.");

/* Locate the global item in form 2. */

if ((globalNode = form2.dereferenceEx(null, "global.global", 0,
UFL_ITEM_REFERENCE | UFL_SEARCH, null)) == null)
throw new UWIException("Could not locate global item.");

/* Copy the custom node from form 1 and insert it as a child of
the global item in form 2. */

if ((duplicateNode = tempNode.duplicate(globalNode, UFL_APPEND_CHILD,
null)) == null)
throw new UWIException("Could not duplicate node.");

}

80 | getNext com.PureEdge.xfdl.FormNodeP
getNext

Description

This method, along with getPrevious, is used to traverse horizontally along the form hierarchy. getNext
returns the next sibling node after the specified object node. For instance, the page node corresponding
to the first page of your form can be reached by calling getNext on the global page node.

Method

public FormNodeP getNext() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The FormNodeP that represents the next sibling node or null if no such node exists. A generic
(UWIException) is thrown if an error occurs.

Example

In the following example the root node of a form is represented by a FormNodeP called theForm. The
method dereferenceEx is used to retrieve an item from the form called NAMELABEL. Then getNext
is used to retrieve a second item that is the next sibling node after NAMELABEL.

public class UFLGetFunctions
{
private static FormNodeP theForm;
private static FormNodeP tempNode;
private static FormNodeP nextNode;

/* Additional Code Removed */

public static void main(String argv[])
{

/* Additional Code Removed */

if ((tempNode = theForm.dereferenceEx(null, "PAGE1.NAMELABEL",
0,FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not locate Name label node.");

}
nextNode = tempNode.getNext();

/* Additional Code Removed */

}
}

com.PureEdge.xfdl.FormNodeP getNodeType | 81
getNodeType

Description

This method returns the type for the current node (for example, page, item, option, and so on). This
allows you to quickly determine the type of node you are working with and what depth you are at in the
node hierarchy.

Method

public int getNodeType() throws UWIException;

Parameters

There are no parameters for this method.

Returns

One of the following types:

■ FormNodeP.UFL_FORM — The root node of the form.

■ FormNodeP.UFL_PAGE — A page level node.

■ FormNodeP.UFL_ITEM — An item level node.

■ FormNodeP.UFL_OPTION — An option level node.

■ FormNodeP.UFL_ARRAY — An argument level node, such as an array element.

This method throws a generic exception (UWIException) if an error occurs.

Example

The following method recieves a node below the page level and uses getParent to ascend the hierarchy
until it reaches a page node, as detected by getNodeType.

private static FormNodeP ascendToPage(FormNodeP theNode) throws Exception
{

while ((theNode != null) && (theNode.getNodeType() !=
FormNodeP.UFL_PAGE))

{
theNode = theNode.getParent();

}
return(theNode);

}

82 | getParent com.PureEdge.xfdl.FormNodeP
getParent

Description

This method, along with getChild, is used to traverse vertically along the form hierarchy. getParent
returns the parent node of the specified object node. If the node has no parent, null is returned. A form’s
structure can be traversed up to the root node using an iterator such as a while loop.

Method

public FormNodeP getParent() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The FormNodeP that represents the parent node or null if no such child exists. A generic
(UWIException) is thrown if an error occurs.

Example

In the following example the root node of a form is represented by a FormNodeP called theForm. The
method dereferenceEx is used to retrieve an option node from the form called PAGE1.AGEFIELD.size.

getParent returns the parent node of PAGE1.AGEFIELD.size, that is, PAGE1.AGEFIELD.

public class UFLGetFunctions
{
private static FormNodeP theForm;
private static FormNodeP tempNode;
private static FormNodeP parentNode;

/* Additional Code Removed */

public static void main(String argv[])
{

/* Additional Code Removed */

if ((tempNode = theForm.dereferenceEx(null,
"PAGE1.AGEFIELD.size", 0, FormNodeP.UFL_OPTION_REFERENCE |
FormNodeP.UFL_SEARCH, null)) == null)

{
throw new UWIException("Could not locate AgeField size

label node.");
}
parentNode = tempNode.getParent();

/* Additional Code Removed */

com.PureEdge.xfdl.FormNodeP getParent | 83
}
}

84 | getPrefix com.PureEdge.xfdl.FormNodeP
getPrefix

Description

This method returns the namespace prefix for the node.

Each namespace is defined in the form in the by a namespace declaration, as shown:

xmlns:xfdl="http://www.PureEdge.com/XFDL/6.0"
xmlns:custom="http://www.PureEdge.com/XFDL/Custom"

Each namespace declaration defines both a prefix and a URI for the namespace. In this sample, the
prefix for the XFDL namespace is xfdl and the URI is http://www.PureEdge.com/XFDL/6.0.

Tags within the form are assigned specific namespaces by using the defined prefix. For example, to
declare that an option was in the custom namespace you would use the prefix custom as shown:

<field sid="testField">
<custom:custom_option>value</custom:custom_option>

</field>

Method

public String getPrefix() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The prefix for the node’s namespace or throws a generic exception (UWIException) if an error occurs.

Example

The following method uses recursion to traverse the entire node structure and destroys all nodes that are
in the custom namespace identified by the prefix custom. This method assumes that you are passing in
the root node of the form.

private static void deleteCustomInfo(FormNodeP theNode) throws Exception
{
FormNodeP tempNode, tempNode2;

/* Use recursion to step through each node of the form. */

tempNode = theNode.getChildren();
while(tempNode != null)
{

tempNode2 = tempNode.getNext();
deleteCustomInfo(tempNode);
tempNode = tempNode2;

com.PureEdge.xfdl.FormNodeP getPrefix | 85
}

/* If the node is in the custom namespace, delete it. */

if (theNode.getPrefix().equals("custom"))
theNode.destroy();

}

86 | getPrefixFromNamespaceURI com.PureEdge.xfdl.FormNodeP
getPrefixFromNamespaceURI

Description

This method returns the namespace prefix for a specific namespace URI. You can call this method from
any node in the form, as long as that node either declares or inherits the namespace in question.

Each namespace is defined in the form in the by a namespace declaration, as shown:

xmlns:xfdl="http://www.PureEdge.com/XFDL/6.0"
xmlns:custom="http://www.PureEdge.com/XFDL/Custom"

Each namespace declaration defines both a prefix and a URI for the namespace. In this sample, the
prefix for the XFDL namespace is xfdl and the URI is http://www.PureEdge.com/XFDL/6.0.

Tags within the form are assigned specific namespaces by using the defined prefix. For example, to
declare that an option was in the custom namespace you would use the prefix custom as shown:

<field sid="testField">
<custom:custom_option>value</custom:custom_option>

</field>

Method

public String getPrefixFromNamespaceURI(

String theURI

) throws UWIException;

Parameters

Returns

The namespace prefix or throws a generic exception (UWIException) if an error occurs. If the
namespace URI is not declared, the result is null.

Example

The following method adds custom information to a form and assumes that the namespace URI for the
custom information is known but that the prefix used to represent that namespace in the form is not
known. First, the method uses getPrefixFromNamespaceURI to get the prefix in use. The method then
concatenates the prefix with the name for the new node, “Status”. Finally, the method locates the global
item in the global page and creates a new option node.

Expression Type Description

theURI String The namespace URI. For example:

http://www.PureEdge.com/XFDL/6.0

com.PureEdge.xfdl.FormNodeP getPrefixFromNamespaceURI | 87
private static void addStatus(FormNodeP theNode) throws Exception
{
XFDL theXFDL;
String thePrefix;
String theNodeName;

/* Retrieve the prefix for the custom namespace. If the prefix is
null, throw an error. */

if ((thePrefix = theNode.getPrefixFromNamespaceURI(
"http://www.PureEdge.com/XFDL/Custom")) == null)
throw new UWIException("Custom namespace not declared in form.");

/* Create a name for a new node by concatenating the prefix with
"Status". */

theNodeName = thePrefix + ":Status";

/* Locate the global item in the global page so we can add a global
option. */

if (theNode = theNode.dereferenceEx(null, "global.global", 0,
UFL_ITEM_REFERENCE | UFL_SEARCH, null) == null)
throw new UWIException("Could not locate global.global node.");

/* Get the XFDL object so we can create a new node. */

if ((theXFDL = IFSSingleton.getXFDL()) == null)
throw new UWIException("Could not find XFDL interface.");

/* Create a new node in the custom namespace and give it a value
of "Processed". */

if (theNode = theXFDL.create(theNode, UFL_APPEND_CHILD, null,
"Processed", null, theNodeName) == null)
throw new UWIException("Could not create Status node.");

}

88 | getPrevious com.PureEdge.xfdl.FormNodeP
getPrevious

Description

This method, along with getNext, is used to traverse horizontally along the form hierarchy. getPrevious
returns the previous sibling node of the specified object node in the tree. For instance, the global page
node can be reached by calling getPrevious on the node corresponding to the first page of your form.

Method

public FormNodeP getPrevious() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The FormNodeP that represents the previous sibling node or null if no such node exists. A generic
exception (UWIException) is thrown if an error occurs.

Example

In the following example the root node of a form is represented by a FormNodeP called theForm. The
method dereferenceEx is used to retrieve an item from the form called NAMELABEL. Then
getPrevious is used to retrieve a second item that is the sibling node before NAMELABEL.

public class UFLGetFunctions
{
private static FormNodeP theForm;
private static FormNodeP tempNode;
private static FormNodeP prevNode;

/* Additional Code Removed */

public static void main(String argv[])
{

/* Additional Code Removed */

if ((tempNode = theForm.dereferenceEx(null, "PAGE1.NAMELABEL",
0,FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not locate Name label node.");

}
prevNode = tempNode.getPrevious();

/* Additional Code Removed */

}
}

com.PureEdge.xfdl.FormNodeP getReferenceEx | 89
getReferenceEx

Description

This method returns the reference string that identifies the node. For example, a value node might return
a reference of Page1.Field1.value. The reference will either begin at the page level of the form or at a
level specified by the caller.

Method

public String getReferenceEx(

String theScheme,

FormNodeP theNSNode,

FormNodeP theStartPoint,

boolean addNamespaces

) throws UWIException;

Parameters

Returns

A string containing a reference to the node, or throws a generic exception (UWIException) if an error
occurs.

Expression Type Description

theScheme String Reserved. This must be null.

theNSNode FormNodeP A node that defines which namespace prefixes are
used when constructing the reference. Only
namespace prefixes that this node inherits are used.
Use null if the node that this method is operating on
has inherited the necessary namespaces.

theStartPoint FormNodeP A node that determines the starting point of the
reference. This node must be a parent of the node this
method is operating on. The reference will begin one
level below the start point node. For example, if you
provide a page node the reference will begin at the item
level. Use null to start the reference at the page level.

addNamespaces boolean Use true to add declarations for unknown namespaces
to the namespace node (theNSNode). Otherwise, use
false.

90 | getReferenceEx com.PureEdge.xfdl.FormNodeP
Notes

Creating a Reference String

For more information about creating a reference, see “References” on page 8.

Working with Namespace Prefixes

In some cases, you may want to use the getReferenceEx method to get the reference to a node that uses
a different prefix for a known namespace. For example, consider the following form:

<label sid="Label1" xmlns:data="URI">
<value></value>

</label>
<field sid="Field1" xmlns:processing="URI">

<value></value>
<processing:myValue>10<processing:myValue>

</field>

In this form, processing and data are prefixes for the same namespace, since they both refer to the same
URI. However, both namespaces have limited scope since they are declared at the item level. This
means that Label1 node does not understand the processing prefix, and that the Field1 node does not
understand the data prefix.

This becomes a problem if you want to refer to a namespace from a location that does not understand
that namespace. For example, suppose you wanted to set the value of Label1 to be a reference to the
myValue node in Field1. Normally, you would locate the myValue node and use getReferenceEx as
shown:

myValueNode.getReferenceEx(null, null, null, false)

In this case, getReferenceEx would return the following reference: Page1.Field1.processing:myValue.
However, because the processing namespace is not defined for Label1, a reference to the processing
namespace is not understood. This means that you cannot set the value of Label1 to equal this reference,
since the node would not understand that content.

Instead, you must generate a reference that includes a known namespace prefix, such as the data
namespace. You can do this by including a second node in the getReferenceEx method. The second
node must understand the appropriate namespace. For example, you could include the Label1 node as
the last parameter in the method, as shown:

myValueNode.getReferenceEx(null, Label1Node, null, false)

In this case, the method will substitute the data prefix for the processing prefix, since they both resolve
to the same namespace. As a result, the method will return: Page1.Field1.data:myValue. Since the data
prefix is defined within Label1, you can use this reference to set Label1’s value node.

Working with Unknown Namespaces

In some cases, you may want to use the UFLGetReferenceEx function to get the reference to a node
that uses an unknown namespace. For example, consider the following form:

<page sid="Page1" xmlns:processing="URI1">
<global sid="global">

<processing:info></processing:info>
</global>

com.PureEdge.xfdl.FormNodeP getReferenceEx | 91
<field sid="Field1" xmlns:data="URI2">
<value></value>
<data:info>data</data:info>

</field>

In this example, you might want to store a reference to the <data:info> element in the <processing:info>
element. getReferenceEx would return the following reference for the <data:info> element:
Page1.Field1.data:info. However, this reference includes the data namespace, which is not defined for
the page global. This means that you could not store this reference in the <processing:info> element,
because it would not understand the reference.

To solve this problem, you can use the addNamespaces flag in the getReferenceEx method. When this
flag is set to true, the function will add unknown namespaces to the theNSNode.

For example, if you set theNSNode to be the global item node for Page1, and set the addNamespace flag
to true, as shown:

dataNode.getReferenceEx(null, pageGlobalNode, null, true)

The method would return the reference to the <data:info> element, but would also modify the global
item node to include the unknown data namespaces, as shown:

<global sid="global" xmlns:data="URI2">

You could then store the reference in that global item or any of its descendants, since the namespace is
now properly defined.

Example

The following example, a page node is passed to the method. The method then uses getChildren and
getNext to locate the last item node in the page. getReferenceEx is then called to get the reference to
that node, which is returned to the caller.

public String getLastItemReference(FormNodeP pageNode)
{
FormNodeP itemNode, tempNode;
String theReference;

/* Get the first item node in the page. */

itemNode = pageNode.getChildren();

/* Cycle through to the last item node in the page. */

while ((tempNode = itemNode.getNext()) != null)
{

itemNode = tempNode;
}

/* Get the reference to the node and return it. */

theReference = itemNode.getReferenceEx(null, null, null, false);

return(theReference);
}

92 | getSecurityEngineName com.PureEdge.xfdl.FormNodeP
getSecurityEngineName

Description

This method returns the name of the appropriate security engine for a given button or signature node.
This is useful for determining which validation call you need to make to validate the signature.

Method

public String getSecurityEngineName(

int theOperation

) throws UWIException;

Parameters

Returns

A string containing the name of the security engine on success, or throws a generic exception
(UWIException) if an error occurs.

Example

The following example uses getSecurityEngineName to get the appropriate engine for a signature
verification. If the engine is HMAC-ClickWrap, the example calls a function that will verify an HMAC
signature. Otherwise, the example calls a function that verifies other types of signatures.

public short validateSignature(FormNodeP sigNode)
{
String engineName;
short validation;

engineName = sigNode.getSecurityEngineName
(SecurityManager.SEOPERATION_VERIFY);

Expression Type Description

theOperation int The operation you want the security engine for.
Possible values are:

SecurityManager.SEOPERATION_SIGN — the
engine is needed to sign the form.

SecurityManager.SEOPERATION_VERIFY — the
engine is needed to verify the signature.

SecurityManager.SEOPERATION_LISTIDENTITIES
— the engine is needed to generate a list of valid
certificates for signing.

com.PureEdge.xfdl.FormNodeP getSecurityEngineName | 93
if (engineName.equals("HMAC-ClickWrap"))
{

validation = validateAuthenticatedClickwrapSignature(sigNode);
}
else
{

validation = validateNormalSignature(sigNode);
}
return(validation);

}

94 | getSigLockCount com.PureEdge.xfdl.FormNodeP
getSigLockCount

Description

This method returns the signature lock count of the specified object node. If 0 is returned, the node is
not signed by any digital signature, but it may have descendants that are signed.

Method

public int getSigLockCount() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The number of locks on the specified object node or throws a generic exception (UWIException) if an
error occurs.

Example

In the following example, dereferenceEx is used to locate the address field node. getSigLockCount is
then used to determine how many signatures have locked the address field.

private static void deleteSignature(FormNodeP theForm) throws Exception
{
FormNodeP addressNode;
FormNodeP tempNode;

if ((addressNode = theForm.dereferenceEx(null, "PAGE1.ADDRESSFIELD",
0, FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not locate ADDRESSFIELD node.");

}

if (addressNode.getSigLockCount() != 2)
{

System.out.println("ADDRESSFIELD not signed twice.");
}

}

com.PureEdge.xfdl.FormNodeP getSignature | 95
getSignature

Description

This method acts on a button or signature node and returns the signature object for that node.

Method

public Signature getSignature() throws UWIException;

Parameters

There are no parameters for this method.

Returns

A signature object if the call is successful, or throws a generic exception (UWIException) if an error
occurs.

Example

The following example uses getSignature to get the signature object from the signature node, and uses
getDataByPath to get the signer’s identity from the signature object. It then calls
validateHMACWithSecret to validate the signature. Finally, it releases the signature object.

public short checkSignature(FormNodeP theSignatureNode, Certificate
theServerCert)
{
Signature theSignatureObject;
String theSecret;
String signerCommonName;
BooleanHolder encodedData;
IntHolder theStatus;
short validation;

theSignatureObject = theSignatureNode.getSignature();

encodedData = new BooleanHolder();

if ((signerCommonName = theSignatureObject.getDataByPath(
"Subject: CN", false, encodedData)) == null)

{
throw new UWIException("Could not determine signer’s name.");

}

/* Include external code that matches the signer’s identity to a shared
secret, and sets theSecret to match. This is most likely a
database lookup. */

96 | getSignature com.PureEdge.xfdl.FormNodeP
theStatus = new IntHolder();

validation = theSignatureNode.validateHMACWithSecret(theSecret,
theServerCert, theStatus);

/* Check the status in case the process required user input. */

if (theStatus.value != SecurityUserStatusType.SUSTATUS_OK)
{

throw new UWIException("Validation required user input.");
}

return(validation);
}

com.PureEdge.xfdl.FormNodeP getSignatureVerificationStatus | 97
getSignatureVerificationStatus

Description

This method checks a flag to see if the digital signatures in a given form were valid when last checked.

This flag is set initially by the readForm function. The flag is updated by other verification functions,
such as verifyAllSignatures, but is not affected by other changes that may have been made to the form.
For example, functions such as setLiteralEx may be used to change the value of signed items in the
form without affecting the value of this flag.

To verify a signature after changes have been made to the form, it is best to use verifySignature or
verifyAllSignatures.

Method

public short getSignatureVerificationStatus() throws UWIException;

Parameters

There are no parameters for this method.

Returns

A short having one of the following values:

On error, the method throws a generic exception (UWIException).

Example

The following example read a form into memory, and then uses getSignatureVerificationStatus to
check if the signatures in a loaded form are valid.

private static void loadForm() throws Exception
{

FormNodeP.readForm("Sample.xfd", 0);

if (theForm.getSignatureVerificationStatus()!= FormNodeP.UFL_SIGS_OK)
{

System.out.println("At least one digital signature is not valid.");
}

}

Code Status

FormNodeP.UFL_SIGS_OK The signatures are valid.

FormNodeP.UFL_SIGS_NOTOK One or more signatures are broken.

FormNodeP.UFL_SIGS_UNVERIFIED One or more signatures are unverifiable.

98 | isXFDL com.PureEdge.xfdl.FormNodeP
isXFDL

Description

This method determines whether the current node belongs to the XFDL namespace.

Each namespace is defined in the form in the by a namespace declaration, as shown:

xmlns:xfdl="http://www.PureEdge.com/XFDL/6.0"
xmlns:custom="http://www.PureEdge.com/XFDL/Custom"

Each namespace declaration defines both a prefix and a URI for the namespace. In this sample, the
prefix for the XFDL namespace is xfdl and the URI is http://www.PureEdge.com/XFDL/6.0.

Tags within the form are assigned specific namespaces by using the defined prefix. For example, to
declare that an option was in the custom namespace you would use the prefix custom as shown:

<field sid="testField">
<custom:custom_option>value</custom:custom_option>

</field>

Method

public boolean isXFDL() throws UWIException;

Parameters

There are no parameters for this method.

Returns

True if the node belongs to the XFDL namespace, false if it does not, or throws a generic exception
(UWIException) if an error occurs.

Example

The following method uses recursion to traverse the entire node structure and destroys all nodes that are
not in the XFDL namespace. This method assumes that you are passing in the root node of the form.

private static void deleteCustomInfo(FormNodeP theNode) throws Exception
{
FormNodeP tempNode, tempNode2;

/* Use recursion to step through each node of the form. */

tempNode = theNode.getChildren();
while(tempNode != null)
{

tempNode2 = tempNode.getNext();
deleteCustomInfo(tempNode);
tempNode = tempNode2;

com.PureEdge.xfdl.FormNodeP isXFDL | 99
}

/* If the node is not in the XFDL namespace, delete it. */

if (theNode.isXFDL() == false)
theNode.destroy();

}

100 | removeAttribute com.PureEdge.xfdl.FormNodeP
removeAttribute

Description

This method removes a specific attribute from a node. For example, the following XFDL represents a
value node:

<value custom:myAtt="x"></value>

To remove the custom attribute from this node, you would use removeAttribute.

Method

public void removeAttribute(

String theNamespaceURI,

String theAttribute

) throws UWIException;

Parameters

Returns

Nothing or throws a generic exception (UWIException) if an error occurs.

Example

The following method uses getAttributeList to retrieve the list of a node’s attributes. It then searches
through the list looking for a compute attribute. When if locates a compute attribute, it uses
removeAttribute to remove the compute from the node.

private static void stripCustomAttributes(FormNodeP theNode) throws
Exception
{
int counter;
StringListHolder URIList = new StringListHolder[];
StringListHolder attributeList = new StringListHolder[];

/* Get the list of attributes for the node. */

Expression Type Description

theNamespace
URI

String The namespace URI for the attribute. For example:

http://www.PureEdge.com/XFDL/6.0

theAttribute String The local name of the attribute. For example, compute,
encoding, and so on.

com.PureEdge.xfdl.FormNodeP removeAttribute | 101
theNode.getAttributeList(URIList, attributeList);

/* Step through each attribute and delete the compute. */

for (counter = 0; counter < attributeList.value.length; counter++)
{

if (attributeList.value[counter].equals("custom:myAtt"))
{

theNode.removeAttribute(URIList.value[counter],
attributeList.value[counter]);

}
}

}

102 | removeEnclosure com.PureEdge.xfdl.FormNodeP
removeEnclosure

Description

This method will either remove an enclosure from a specific datagroup or delete the enclosure from the
form. The specified object node is the FormNodeP that contains the enclosure to be removed.

Method

public void removeEnclosure(

String theDataGroup

) throws UWIException;

Parameters

Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Example

The following example uses dereferenceEx to locate a specific data node. removeEnclosure is then
used to remove the node from the form.

private static void deleteLogo(FormNodeP theForm) throws Exception
{
FormNodeP tempNode;

if ((tempNode = theForm.dereferenceEx(null, "PAGE1.LOGODATA", 0,
FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not locate LOGODATA node.");

}

tempNode.removeEnclosure(null);
}

Expression Type Description

theDataGroup String This is the datagroup that contains the enclosed item. If null,
the item will be removed from all datagroups. If an item no
longer belongs to any datagroups, it is deleted from the form.

com.PureEdge.xfdl.FormNodeP setActiveForComputationalSystem | 103
setActiveForComputationalSystem

Description

This method sets whether the computational system is active. When active, all computes in the form are
evaluated on an on-going basis. When inactive, no computes are evaluated.

Note that turning the computational system on causes all computes in the form to be re-evaluated, which
can be time consuming.

Method

public void setActiveForComputationalSystem(

boolean active,

) throws UWIException;

Parameters

Returns

Nothing or throws a generic exception (UWIException) if an error occurs.

Example

The following example reads a form into memory with the computational system turned off. The
example then calls a processing method that adds a large amount of information to the form. Next,
setActiveForComputationalSystem is called to turn the computational system on and evaluate all of
the computes. Finally, the updated form is written to disk.

private static void processForm() throws Exception
{
XFDL theXFDL;
FormNodeP theForm;

/* Get the XFDL object */

if ((theXFDL = IFSSingleton.getXFDL()) == null)
throw new Exception("Could not find interface");

/* Read the form into memory with the computes turned off */

if ((theForm = theXFDL.readForm("input.xfd",
XFDL.UFL_AUTOCOMPUTE_OFF)) == null)
throw new Exception("Could not load form.");

Expression Type Description

active boolean Set to true for active or false for inactive.

104 | setActiveForComputationalSystem com.PureEdge.xfdl.FormNodeP
/* Call a method that adds information to the form from a database */

addInformation(theForm);

/* Activate the computational system. This will re-evaluate all
computes with the new information in the form. */

theForm.setActiveForComputationalSystem(true);

/* Write the updated form to disk */

theForm.writeForm("output.xfd", null, 0);
}

com.PureEdge.xfdl.FormNodeP setAttribute | 105
setAttribute

Description

This method sets the value of a specific attribute for a node. For example, the following XFDL
represents a value node:

<value custom:myAtt="x"></value>

To change the custom attribute, you would use setAttribute. If the attribute does not already exist,
setAttribute will create it and assign the appropriate value.

Note: Do not use setAttribute to set the compute attribute. Instead, use setFormula.

Method

public void setAttribute(

String theNamespaceURI,

String theAttribute,

String theValue

) throws UWIException;

Parameters

Returns

Nothing or throws a generic exception (UWIException) if an error occurs.

Notes

Namespaces

If you refer to an attribute with a namespace prefix, setAttribute first looks for a complete match,
including both prefix and attribute name. If it does not find such a match, it will look for a matching
attribute name that has no prefix but whose containing element has the same namespace.

Expression Type Description

theNamespace
URI

String The namespace URI for the attribute. For example:

http://www.PureEdge.com/XFDL/6.0

theAttribute String The local name of the attribute. For example, compute,
encoding, and so on.

theValue String The value to assign to the attribute.

106 | setAttribute com.PureEdge.xfdl.FormNodeP
For example, assume that the custom namespace and the test namespace both resolve to the same URI.
In the following case, looking for the id attribute would locate the second attribute (test:id), since it has
an explicit namespace declaration:

<a xmlns:custom="ABC" xmlns:test="ABC">
<custom:myElement id="1" test:id="2">

However, in the next case, the id attribute does not have an explicit namespace declaration. Instead, it
inherits the custom namespace. However, since the inherited namespace resolves to the same URI, the
id attribute is still located:

<custom:myElement id="1">

Example

The following example shows a shortcut method that sets a custom data attribute for a specific node. A
node and a string containing the contents of the attribute are passed to the method, which then uses
setAttribute to set the attribute for the node.

private static void setCustomAttribute(FormNodeP theNode, String
theContents) throws Exception
{

theNode.setAttribute("http://www.PureEdge.com/XFDL/Custom", "Data",
theContents)

}

com.PureEdge.xfdl.FormNodeP setFormula | 107
setFormula

Description

This method sets the formula of the specified object node.

Method

public void setFormula(

String theFormula

) throws UWIException;

Parameters

Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Example

In this example, dereferenceEx is used to locate a specific node. setFormula is then used to set the
appropriate formula for the age field.

private static void setFormula(int curMonth, int curDay, int birMonth,
int birDay) throws Exception

{
FormNodeP tempNode;

theForm.dereferenceEx(null, "PAGE1.AGEFIELD.value", 0,
FormNodeP.UFL_OPTION_REFERENCE | FormNodeP.UFL_SEARCH_AND_CREATE,
null)

/* The following logic simply identifies how the computation should be
set. If the current date is later in the year than the birth date,
then the age is: current year - birth year. If the current date is
earlier in the year than the birth date, then the age is: current year
- birth year - 1. */

if ((curMonth > birMonth) ||
(curMonth == birMonth) && (curDay > birDay)))

{

tempNode.setFormula("PAGE1.CURRENTYEAR.value –

Expression Type Description

theFormula String The formula to assign to the specified object node. If null, the
formula is assigned as null.

108 | setFormula com.PureEdge.xfdl.FormNodeP
PAGE1.BIRTHYEAR.value");
}
else
{

tempNode.setFormula("PAGE1.CURRENTYEAR.value –
PAGE1.BIRTHYEAR.value - \"1\"");

}

/* additional code removed */
}

com.PureEdge.xfdl.FormNodeP setLiteralEx | 109
setLiteralEx

Description

This method sets the literal of a node. You should only set the literal for option or argument nodes.

Method

public void setLiteralEx(

String theCharSet,

String theLiteral

) throws UWIException;

Parameters

Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Notes

Digital Signatures

You must not set the literal of a node that has already been signed because this will break the digital
signature and produce an error.

Example

In the following example, dereferenceEx is used to locate a specific node. setLiteralEx is then used to
change the literal of that node.

private static void changeNameLabel(FormNodeP theForm, String newName)
throws Exception
{
FormNodeP tempNode;

if ((tempNode = theForm.dereferenceEx(null, "PAGE1.NAMELABEL.value",
0, FormNodeP.UFL_OPTION_REFERENCE | FormNodeP.UFL_SEARCH, null)) ==
null)

Expression Type Description

theCharSet String The character set in which theLiteral parameter is written. Use
null or Unicode for Unicode. Use Symbol for Symbol.

theLiteral String The literal to assign to the specified object node. If null, any
existing literal is removed.

110 | setLiteralEx com.PureEdge.xfdl.FormNodeP
{
throw new UWIException("Could not locate value node for

NAMELABEL.");
}

tempNode.setLiteralEx(null, newName);
}

com.PureEdge.xfdl.FormNodeP setLiteralByRefEx | 111
setLiteralByRefEx

Description

This method finds a particular FormNodeP as specified by a reference string. The specified object node
is used as the starting point of the search. Once the FormNodeP is found, its literal will be set as
specified. If the FormNodeP does not exist, this method will create it, but only if the FormNodeP
would be an option or argument node.

If necessary, this method can create several nodes at once. For example, if you set the literal for the
second argument of an itemlocation, this method will create the itemlocation option node and the two
argument nodes and then set the literal for the second argument node.

This method cannot create a FormNodeP at the form, page, or item level; to do so, use create.

Method

public void setLiteralByRefEx(

String theScheme,

String theReference,

int theReferenceCode,

String theCharset,

FormNodeP theNSNode,

String theLiteral

) throws UWIException;

Parameters

Expression Type Description

theScheme String Reserved. This must be null.

theReference String A string that contains the reference.

theReferenceCode int Reserved. This must be 0.

theCharSet String The character set in which theLiteral parameter is written. Use
null for Unicode or Symbol for Symbol.

theNSNode FormNodeP A node that is used to resolve the namespaces in
theReference parameter (see the note about namespace
below). Use null if the node that this method is operating on
has inherited the necessary namespaces.

theLiteral String The string that will be assigned to the literal. If null, any
existing literal is removed.

112 | setLiteralByRefEx com.PureEdge.xfdl.FormNodeP
Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Notes

This method is a shortcut method and is equivalent to performing the following on a FormNodeP
object:

aNode.dereferenceEx(theScheme, theReference, theReferenceCode,
UFL_OPTION_REFERENCE | UFL_SEARCH_AND_CREATE,
theNamespaceNode).setLiteralEx(aCharSet, aLiteral);

FormNodeP

Before you decide which FormNodeP to use as the specified object node, be sure you understand the
following:

1. The FormNodeP you supply can never be more than one level in the hierarchy above the level at
which your reference string starts. For example, if the reference string begins with an option, then
the FormNodeP can be no higher in the hierarchy than an item.

2. If the FormNodeP is at the same level or lower in the hierarchy than the starting point of the
reference string, the method will attempt to locate a common ancestor. The method will locate the
ancestor of the FormNodeP that is one level in the hierarchy above the starting point of the
reference string. The method will then attempt to follow the reference string back down through the
hierarchy. If the reference string cannot be followed from the located ancestor (for example, if the
ancestor is not common to both the FormNodeP and the reference string), the method will fail.

For example, given a FormNodeP that represents “field_1” and a reference of “field_2”, the
method will access the “page” node above “field_1”, and will then try to locate “field_2” below
that node. If the two fields were not on the same page, the method would fail.

Creating a Reference String

For more information about creating a reference, see “References” on page 8.

Digital Signatures

Do not set a node that is digitally signed. Doing so will break the digital signature and produce an error.

Determining Namespace

In some cases, you may want to use the setLiteralByRefEx method to set the value for a node that does
not have a globally defined namespace. For example, consider the following form:

<label sid="Label1">
<value>Field1.processing:myValue</value>

</label>
<field sid="Field1" xmlns:processing="URI">

<value></value>
<processing:myValue>10<processing:myValue>

</field>

com.PureEdge.xfdl.FormNodeP setLiteralByRefEx | 113
In this form, the processing namespace is declared in the Field1 node. Any elements within Field1 will
understand that namespace; however, elements outside of the scope of Field1 will not.

In cases like this, you will often start your search at a node that does not understand the namespace of
the node you are trying to locate. For example, you might want to locate the node referenced in the
value of Label1. In this case, you would first locate the Label1 value node and get its literal. Then, from
the Label1 value node, you would attempt to locate the processing:myValue node as shown:

Label1Node.setLiteralByRefEx(null, "Field1.processing:myValue", 0,
null, null, "20")

In this example, the setLiteralByRefEx method would fail. The method cannot properly resolve the
processing namespace because this namespace is not defined for the Label1 value node. To correct this,
you must also provide a node that understands the processing namespace (in this case, any node in the
scope of Field1) as the last parameter in the method:

Label1Node.setLiteralByRefEx(null, "Field1.processing:myValue", 0,
null, Field1Node, "20")

Example

In the original form, the label for the Age field instructs the user to leave the field blank. However, now
that the field has been filled in by a formula, this label needs to be changed. In the following example
setLiteralByRefEx is used to change this value.

private static void setFormula(int curMonth, int curDay, int birMonth,
int birDay) throws Exception

{
/* additional code removed */

theForm.setLiteralByRefEx(null, "PAGE1.AGELABEL.value", 0, null,
null, "Age:");

}

114 | signForm com.PureEdge.xfdl.FormNodeP
signForm

Description

This method acts on a button node and creates a digital signature for that button. The signature is
created using the signature filter in the button and the private key of the signer.

Method

public Signature signForm(

Certificate theSigner,

StringDictionary theInfo,

IntHolder theStatus,

) throws UWIException;

Parameters

Returns

A signature object if the call is successful, or throws a generic exception (UWIException) if an error
occurs.

Example

The following example uses dereferenceEx to locate a specific signature button node.
getCertificateList is then used to get a list of valid certificates for that button. Finally, signForm signs
the button using the first certificate in the list.

private void createSignature(FormNodeP theForm)throws Exception

Expression Type Description

theSigner Certificate The certificate to use to create the signature.

theInfo StringDictionary Always use a null value.

theStatus IntHolder This is a status flag that reports whether the operation was
successful. Possible values are:

SecurityUserStatusType.SUSTATUS_OK — the operation
was successful.

SecurityUserStatusType.SUSTATUS_CANCELLED — the
operation was cancelled by the user.

SecurityUserStatusType.SUSTATUS_INPUT_REQUIRED
— the operation required user input, but could not receive it
(for example, it was run on a server with no user).

com.PureEdge.xfdl.FormNodeP signForm | 115
{
FormNodeP buttonNode;
IntHolder theStatus;
Signature theSignature;
Certificate [] certList;

if ((buttonNode = theForm.dereferenceEx(null, "PAGE1.SIGBUTTON1",
0, FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not locate SIGBUTTON1 node.");

}

theStatus = new IntHolder();

certList = buttonNode.getCertificateList(null, theStatus);

if (theStatus.value == SecurityUserStatusType.SUSTATUS_INPUT_REQUIRED)
{

throw new UWIException("User input required to sign form.");
}

theSignature = buttonNode.signForm(certList[0], null, theStatus);

if (theStatus.value == SecurityUserStatusType.SUSTATUS_INPUT_REQUIRED)
{

throw new UWIException("User input required to sign form.");
}

}

116 | validateHMACWithSecret com.PureEdge.xfdl.FormNodeP
validateHMACWithSecret

Description

This method acts on a signature node to determine whether an HMAC signature is valid. You must
know the signer’s shared secret to use this method. The shared secret should be available from a
corporate database or other system.

This function will also notarize (that is, digitally sign) a valid HMAC signature if you provide a
certificate. Once notarized, you must use the verifySignature method to validate the signature.

Method

public short validateHMACWithSecret(

String theSecret,

Certificate theServerCert,

IntHolder theStatus,

) throws UWIException;

Parameters

Expression Type Description

theSecret String The shared secret that identifies the user. This should be available
from a corporate database or other system.

If there is more than one shared secret, you must concatenate the
strings with no separating characters. For example, if the secrets
were “blue” and “red”, you would pass “bluered” to the function.

theServerCert Certificate The server certificate. If the HMAC signature is valid, the function
will use the private key of this certificate to digitally sign the HMAC
signature. This signature is appended to the signature item, and
can be verified using UFLverifySignature.

If you pass null, the function will simply validate the HMAC
signature.

com.PureEdge.xfdl.FormNodeP validateHMACWithSecret | 117
Returns

A constant if the verification is successful, or throws a generic exception (UWIException) if an error
occurs. The following table lists the possible return values:

Example

The following example uses getSignature to get the signature object from the signature node, and uses
getDataByPath to get the signer’s identity from the signature object. It then calls
validateHMACWithSecret to validate the signature. Finally, it releases the signature object.

public short checkSignature(FormNodeP theSignatureNode, Certificate
theServerCert)
{
Signature theSignatureObject;
String theSecret;
String signerCommonName;
BooleanHolder encodedData;
IntHolder theStatus;

theStatus IntHolder This is a status flag that reports whether the operation was
successful. Possible values are:

SecurityUserStatusType.SUSTATUS_OK — the operation was
successful.

SecurityUserStatusType.SUSTATUS_CANCELLED — the
operation was cancelled by the user.

SecurityUserStatusType.SUSTATUS_INPUT_REQUIRED — the
operation required user input, but could not receive it (for example,
it was run on a server with no user).

Expression Type Description

Code Status

FormNodeP.UFL_DS_OK The signature is verified.

FormNodeP.UFL_DS_ALGORITHMUNAVAILABLE The appropriate verification engine for the
signature is not available.

FormNodeP.UFL_DS_F2MATCHSIGNER The certificate does not match the signer’s name.

FormNodeP.UFL_DS_FAILEDAUTHENTICATION The signature is invalid or the secret used is
incorrect.

FormNodeP.UFL_DS_HASHCOMPFAILED The document has been tampered with.

FormNodeP.UFL_DS_NOSIGNATURE There is no signature.

FormNodeP.UFL_DS_NOTAUTHENTICATED The signer cannot be authenticated.

FormNodeP.UFL_DS_UNEXPECTED An unexpected error occurred.

FormNodeP.UFL_DS_UNVERIFIABLE The signature cannot be verified.

118 | validateHMACWithSecret com.PureEdge.xfdl.FormNodeP
short validation;

theSignatureObject = theSignatureNode.getSignature();

encodedData = new BooleanHolder();

if ((signerCommonName = theSignatureObject.getDataByPath(
"Subject: CN", false, encodedData)) == null)

{
throw new UWIException("Could not determine signer’s name.");

}

/* Include external code that matches the signer’s identity to a shared
secret, and sets theSecret to match. This is most likely a
database lookup. */

theStatus = new IntHolder();

validation = theSignatureNode.validateHMACWithSecret(theSecret,
theServerCert, theStatus);

/* Check the status in case the process required user input. */

if (theStatus.value != SecurityUserStatusType.SUSTATUS_OK)
{

throw new UWIException("Validation required user input.");
}

return(validation);
}

com.PureEdge.xfdl.FormNodeP validateHMACWithHashedSecret | 119
validateHMACWithHashedSecret

Description

This method acts on a signature node to determine whether an HMAC signature is valid. You must
know the hash of the signer’s shared secret to use this method. The hash of the shared secret should be
available from a corporate database or other system.

This function will also notarize (that is, digitally sign) a valid HMAC signature if you provide a
certificate. Once notarized, you must use the verifySignature method to validate the signature.

Method

public short validateHMACWithSecret(

byte [] hashedSecret,

Certificate theServerCert,

IntHolder theStatus,

) throws UWIException;

Parameters

Expression Type Description

hashedSecret byte [] The shared secret that identifies the user. This should be available
from a corporate database or other system.

If there is more than one shared secret, you must concatenate the
strings with no separating characters, and then hash the combined
secret. For example, if the secrets were “blue” and “red”, you
would pass the hash of “bluered” to the function.

theServerCert Certificate The server certificate. If the HMAC signature is valid, the function
will use the private key of this certificate to digitally sign the HMAC
signature. This signature is appended to the signature item, and
can be verified using UFLverifySignature.

If you pass null, the function will simply validate the HMAC
signature.

120 | validateHMACWithHashedSecret com.PureEdge.xfdl.FormNodeP
Returns

A constant if the verification is successful, or throws a generic exception (UWIException) if an error
occurs. The following table lists the possible return values:

Example

The following example uses getSignature to get the signature object from the signature node, and uses
getDataByPath to get the signer’s identity from the signature object. Next, it calls
validateHMACWithSecret to validate the signature. Finally, it releases the signature object.

public short checkSignature(FormNodeP theSignatureNode, Certificate
theServerCert)
{
Signature theSignatureObject;
byte [] hashedSecret;
String signerCommonName;
BooleanHolder encodedData;
IntHolder theStatus;

theStatus IntHolder This is a status flag that reports whether the operation was
successful. Possible values are:

SecurityUserStatusType.SUSTATUS_OK — the operation was
successful.

SecurityUserStatusType.SUSTATUS_CANCELLED — the
operation was cancelled by the user.

SecurityUserStatusType.SUSTATUS_INPUT_REQUIRED — the
operation required user input, but could not receive it (for example,
it was run on a server with no user).

Expression Type Description

Code Status

FormNodeP.UFL_DS_OK The signature is verified.

FormNodeP.UFL_DS_ALGORITHMUNAVAILABL
E

The appropriate verification engine for the
signature is not available.

FormNodeP.UFL_DS_F2MATCHSIGNER The certificate does not match the signer’s name.

FormNodeP.UFL_DS_FAILEDAUTHENTICATION The signature is invalid or the secret used is
incorrect.

FormNodeP.UFL_DS_HASHCOMPFAILED The document has been tampered with.

FormNodeP.UFL_DS_NOSIGNATURE There is no signature.

FormNodeP.UFL_DS_NOTAUTHENTICATED The signer cannot be authenticated.

FormNodeP.UFL_DS_UNEXPECTED An unexpected error occurred.

FormNodeP.UFL_DS_UNVERIFIABLE The signature cannot be verified.

com.PureEdge.xfdl.FormNodeP validateHMACWithHashedSecret | 121
short validation;

theSignatureObject = theSignatureNode.getSignature();

encodedData = new BooleanHolder();

if ((signerCommonName = theSignatureObject.getDataByPath(
"Subject: CN", false, encodedData)) == null)

{
throw new UWIException("Could not determine signer’s name.");

}

/* Include external code that matches the signer’s identity to a hashed
shared secret, sets hashedSecret to match. This is most likely a
database lookup. */

hashedSecret = theHashObject.hash(theSecret);

theStatus = new IntHolder();

validation = theSignatureNOde.validateHMACWithHashedSecret(
hashedSecret, theServerCert, theStatus);

/* Check the status in case the process required user input. */

if (theStatus.value != SecurityUserStatusType.SUSTATUS_OK)
{

throw new UWIException("Validation required user input.");
}

return(validation);
}

122 | verifyAllSignatures com.PureEdge.xfdl.FormNodeP
verifyAllSignatures

Description

This method verifies the correctness of all digital signatures in a given form whose root node is the
specified object node. It finds all items of type signature and calls verifySignature for each item. Errors
are logged for all invalid signatures.

Method

public short verifyAllSignatures(

boolean reportAsErrorsFlag

) throws UWIException;

Parameters

Returns

A short having one of the following values:

If one or more of the signatures is not valid and the reportAsErrorsFlag is true, a generic exception
(UWIException) is thrown.

On error, the method throws a generic exception (UWIException).

Example

In the following example, verifyAllSignatures determines whether or not all the signatures in the form
are valid. If any one of the digital signatures is not valid, a message is printed.

private static void checkSignatures(FormNodeP theForm) throws Exception
{

if (theForm.verifyAllSignatures(false) == FormNodeP.UFL_SIGS_OK)

Expression Type Description

reportAsErrorsFlag boolean Set to true if you want errors about the signatures to be
reported by throwing a UWIException or false if you want the
error code to be returned through the return value.

Code Status

FormNodeP.UFL_SIGS_OK The signatures are valid.

FormNodeP.UFL_SIGS_NOTOK One or more signatures are broken.

FormNodeP.UFL_SIGS_UNVERIFIED One or more signatures are unverifiable.

com.PureEdge.xfdl.FormNodeP verifyAllSignatures | 123
{
System.out.println("All the digital signatures are valid.");

}
}

124 | verifySignature com.PureEdge.xfdl.FormNodeP
verifySignature

Description

This method verifies the correctness of the given digital signature. You call this method on the root of
the form containing the signature you want to verify. This function will check the following conditions:

■ The signature item contains mimedata.

■ The mimedata contains a hash value and signer certificate.

■ The signer certificate contains the same ID as that recorded in the signature item’s signer option.

■ The signer certificate has not expired.

A plain text representation of the form (filtered by the signature item’s filter) is constructed and the
result is hashed. This hash value must match the hash value stored in the signature.

Method

public short verifySignature(

FormNodeP signatureItem,

StringHolder theCertChain,

boolean reportAsErrorsFlag

) throws UWIException;

Parameters

Returns

A short having one of the following values:

Expression Type Description

signatureItem FormNodeP The signature to verify.

theCertChain StringHolder A StringHolder where a text description listing certificates in
the chain of issuance from the signer to the root certifying
authority will be stored. Each entry is followed by two platform-
specific line delimiters (for example, \r\n\r\n under Windows).

reportAsErrorsFlag boolean Set to true if you want errors about the signatures to be
reported by throwing a UWIException or false if you want the
error code to be returned through the return value.

Code Status

FormNodeP.UFL_DS_OK The signature is verified.

com.PureEdge.xfdl.FormNodeP verifySignature | 125
If the signature is not valid and the reportAsErrorsFlag is true, a generic exception (UWIException) is
thrown.

On error, the method throws a generic exception (UWIException).

FormNodeP.UFL_DS_ALGORITHMUNAVAILABLE The appropriate verification engine for the
signature is not available.

FormNodeP.UFL_DS_CERTEXPIRED The certificate has expired.

FormNodeP.UFL_DS_CERTNOTFOUND The certificate cannot be located.

FormNodeP.UFL_DS_CERTNOTTRUSTED The certificate is not trusted.

FormNodeP.UFL_DS_CERTREVOKED The certificate has been revoked.

FormNodeP.UFL_DS_CRLINVALID The certificate revocation list is invalid.

FormNodeP.UFL_DS_F2MATCHSIGNER The certificate does not match the signer’s name.

FormNodeP.UFL_DS_HASHCOMPFAILED The document has been tampered with.

FormNodeP.UFL_DS_ISSUERCERTEXPIRED The issuer’s certificate has expired.

FormNodeP.UFL_DS_ISSUERINVALID The issuer is invalid for the certificate used to
sign.

FormNodeP.UFL_DS_
ISSUERKEYUSAGEUNACCEPTABLE

The issuer certificate’s key usage extension does
not match what the key was used for.

FormNodeP.UFL_DS_ISSUERNOTCA The certificate’s issuer is not a Certificate
Authority.

FormNodeP.UFL_DS_ISSUERNOTFOUND The issuer’s certificate was not located.

FormNodeP.UFL_DS_ISSUERSIGFAILED Verification of the issuer’s certificate failed.

FormNodeP.UFL_DS_KEYREVOKED The key used to create the signature has been
revoked.

FormNodeP.UFL_DS_
KEYUSAGEUNACCEPTABLE

The certificiate’s key usage extension does not
match what the key was used for.

FormNodeP.UFL_DS_KRLINVALID The Key Revocation List is invalid.

UFL_DS_NOSIGNATURE There is no signature.

UFL_DS_NOTAUTHENTICATED The signer cannot be authenticated.

FormNodeP.UFL_DS_POLICYUNACCEPTABLE The certificate’s policy extension does not match
the acceptable policies.

FormNodeP.UFL_DS_SIGNATUREALTERED The signature has been tampered with.

FormNodeP.UFL_DS_UNEXPECTED An unexpected error occurred.

FormNodeP.UFL_DS_UNVERIFIABLE The signature cannot be verified.

Code Status

126 | verifySignature com.PureEdge.xfdl.FormNodeP
Example

In the following example, dereferenceEx is used to locate a signature node. verifySignature then
determines whether the signature is valid. If the signature is not valid, a message is printed.

private static void checkSignature(FormNodeP theForm) throws Exception
{
StringHolder certChain = new StringHolder();
FormNodeP tempNode;

if ((tempNode = theForm.dereferenceEx(null, "PAGE1.SIGNATURE1", 0,
FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not locate SIGNATURE node.");

}

if (theForm.verifySignature(tempNode, certChain, false) == 0)
{

System.out.println("The first signature is valid.");
}

/* If verifySignature returned a value that is equal to the FormNodeP
constant UFL_DS_F2MATCHSIGNER, a message explaining the error is
displayed. */

if (theForm.verifySignature(tempNode, certChain, false) ==
FormNodeP.UFL_DS_F2MATCHSIGNER)

{
System.out.println("The name in the form doesn’t match the name in

the signature.");
}

}

com.PureEdge.xfdl.FormNodeP writeForm | 127
writeForm

Description

This method will write a form to the specified file or stream. The specified object node is treated as the
root node of the form that should be written. The version number of the form will determine the format
of the output file. You can specify whether to compress the output and whether to observe the transmit/
save settings in the form.

If no format is specified, the default is to write the form in the same format in which it was read. If the
form in question was created dynamically by your application, writeForm will, by default, write it as
an XFDL form in uncompressed format.

Method

WRITING TO A FILE:

public void writeForm(

String thePath,

FormNodeP triggerItem,

int flags

) throws UWIException;

WRITING TO A STREAM:

public void writeForm(

OutputStream theStream,

FormNodeP triggerItem,

int flags

) throws UWIException;

Parameters

Expression Type Description

thePath String This is the path to the file on the local disk to which the form
will be written.

theStream OutputStream This is the stream to which you want to write the form data.

triggerItem FormNodeP This is the item that caused the form to be submitted. Set to
null if you are not using transmits.

128 | writeForm com.PureEdge.xfdl.FormNodeP
Returns

Returns nothing if the call is successful, or throws a generic exception (UWIException) if an error
occurs.

Example

The following example uses writeForm to write the form in memory to a file on the local drive.

private static void saveForm() throws Exception
{

theForm.writeForm("Output.xfd", null, 0);
}

flags int The following flags are valid:

FormNodeP.UFL_TRANSMIT_ALLOW allows the transmit
options (that is, transmitdatagroups, transmitgroups,
transmititemrefs, transmititems, transmitoptionrefs,
transmitpagerefs, and transmitoptions) to control which
portions of the form are sent. Without this flag, the entire form
will be sent regardless of the transmit options in the form.

FormNodeP.UFL_SAVE_ALLOW allows the saveformat
option to specify the file format. If no format is specified, the
form is saved in the same format in which it was read.

FormNodeP.UFL_GZIP_COMPRESS causes the form to be
saved as a compressed file with a content-encoding of “gzip”
as the default format.

Note: Specify 0 if you do not want to enable any of the
transmit options.

Expression Type Description

com.PureEdge.xfdl.FormNodeP xmlModelUpdate | 129
xmlModelUpdate

Description

This method updates the XML data model in the form. This is nessary if computes have changed the
structure of the data model in some way, such as changing or adding bindings. These sorts of changes
do not take effect until the xmlModelUpdate function is called.

Function

public void xmlModelUpdate() throws UWIException;

Parameters

None.

Returns

Returns nothing if the call is successful, or throws a generic exception (UWIException) if an error
occurs.

Example

The following example uses setLiteralByRefEx to change a binding in the form, so that it binds to a
different option. It then calls xmlModelUpdate so that the data model reflects the change.

private static void setBinding throws Exception
{

theForm.setLiteralByRefEx(null,
"global.global.xmlmodel.bindings[0][boundoption]", 0, null, null,
"PAGE1.FIELD5.value");

theForm.xmlModelUpdate();
}

130 | xmlModelUpdate com.PureEdge.xfdl.FormNodeP

 The Hash Class | 131
The Hash Class

The Hash class allows you to hash messages.

■ Any application that makes calls to the Hash methods must first import the following class:

com.PureEdge.security.Hash

■ Many of the methods in the ICS API will throw a generic exception called a UWIException if an
error occurs. Import the following class to any .java files that call methods from the ICS API:

com.PureEdge.error.UWIException

132 | hash com.PureEdge.security.Hash
hash

Description

This function hashes a message using the hashing algorithm of your choice.

Method

public byte [] hash(

byte [] theMessage

) throws UWIException;

Parameters

Returns

A hashed message, or throws a generic exception (UWIException) if an error occurs.

Example

The following example uses getSignature to get the signature object from the signature node, and uses
getDataByPath to get the signer’s identity from the signature object. It then retrieves the signer’s
shared secret from a database, and hashes that secret using the hash method. Finally, it calls
validateHMACWithHashedSecret to validate the signature.

public short checkSignature(FormNodeP theSignatureNode, Certificate
theServerCert, Hash theHashObject)
{
Signature theSignatureObject;
byte[] theSecret;
byte [] hashedSecret;
String signerCommonName;
BooleanHolder encodedData;
IntHolder theStatus;
short validation;

theSignatureObject = theSignatureNode.getSignature();

encodedData = new BooleanHolder();

if ((signerCommonName = theSignatureObject.getDataByPath(
"Subject: CN", false, encodedData)) == null)

{
throw new UWIException("Could not determine signer’s name.");

Expression Type Description

theMessage byte [] The message you want to hash.

com.PureEdge.security.Hash hash | 133
}

/* Include external code that matches the signer’s identity to a
shared secret and sets theSecret to match. This is most likely a
database lookup. */

hashedSecret = theHashObject.hash(theSecret);

theStatus = new IntHolder();

validation = theSignatureNode.validateHMACWithHashedSecret(
hashedSecret, theServerCert, theStatus);

/* Check the status in case the process required user input. */

if (theStatus.value != SecurityUserStatusType.SUSTATUS_OK)
{

throw new UWIException("Validation required user input.");
}

return(validation);
}

134 | hash com.PureEdge.security.Hash

 The IFSSingleton Class | 135
The IFSSingleton Class
The IFSSingleton class provides a static interface to the application’s XFDL object.

■ You must import the following class to any .java files that need to access an XFDL object:

com.PureEdge.IFSSingleton

■ Many of the methods in the ICS API will throw a generic exception called a UWIException if an
error occurs. Import the following class to any .java files that call methods from the ICS API:

com.PureEdge.error.UWIException

136 | getFunctionCallManager com.PureEdge.IFSSingleton
getFunctionCallManager

Description

Use this method to retrieve the Function Call Manager. The Function Call Manager maintains a list of
all of the packages and custom functions that are available. As such, you must register all function calls
with the Function Call Manager.

Method

public static XFDL getFunctionCallManager() throws UWIException;

Parameters

There are no parameters for this method.

Returns

Returns the FunctionCallManger object or throws a generic exception (UWIException) if an error
occurs.

Example

In the following example, the FciFunctionCall method calls getFunctionCallManager to obtain the
Function Call Manager object called theFCM.

public FciFunctionCall(IFX IFXMan) throws UWIException
{
FunctionCallManager theFCM;

if ((theFCM = IFSSingleton.getFunctionCallManager()) == null)
throw new UWIException("Needed Function Call Manager")

}

com.PureEdge.IFSSingleton getLocalizationManager | 137
getLocalizationManager

Description

Use this method to obtain the LocalizationManager object. The LocalizationManager object is an
interface through which you can set the language the API uses to report errors.

Method

public static LocalizationManager getLocalizationManager() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The LocalizationManager object or throws a generic exception (UWIException) if an error occurs.

Example

In the following example, the setLanguage method calls getLocalizationManager to obtain the
LocalizationManager object called theManager.

private static void setLanguage() throws Exception
{
LocalizationManager theManager;

theManager = IFSSingleton.getLocalizationManager();
if(theManager == null)

throw new Exception("Could not find interface");
theManager.setDefaultLocale("en_US");

}

138 | getSecurityManager com.PureEdge.IFSSingleton
getSecurityManager

Description

This function retrieves the Security Manager object. Use the Security Manager object to retrieve the
available hash algorithms.

To avoid a conflict with an existing class in Java (java.lang.SecurityManager), you must refer to the
Security Manager by the full class name of com.PureEdge.security.SecurityManager.

Method

public SecurityManager getSecurityManager() throws UWIException;

Parameters

There are no parameters for this method.

Returns

A Security Manager object, or throws a generic exception (UWIException) if an error occurs.

Example

The following example uses getSecurityManager to get the Security Manager object.
lookupHashAlgorithm is then called to get the sha1 hash algorithm.

public Hash getHashAlgorithm();
{
com.PureEdge.security.SecurityManager theSecurityManager;
Hash tempHashObject;

theSecurityManager = IFSSingleton.getSecurityManager();

theHash = theSecurityManager.lookupHashAlgorithm("sha1");

return(theHash);
}

com.PureEdge.IFSSingleton getXFDL | 139
getXFDL

Description

Use this method to obtain the XFDL object. The XFDL object is an interface through which you can
access the form’s root node. As a result, any program that needs to load an XFDL form must first obtain
the XFDL object.

Method

public static XFDL getXFDL() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The XFDL object or throws a generic exception (UWIException) if an error occurs.

Example

In the following example, the loadForm method calls getXFDL to obtain the XFDL object called
theXFDL.

private static void loadForm() throws Exception
{
XFDL theXFDL;
FormNodeP theForm;

theXFDL = IFSSingleton.getXFDL();
if(theXFDL == null)

throw new Exception("Could not find interface");
theForm = theXFDL.readForm("Sample.xfd", 0);
if(theForm == null)

throw new Exception("Could not load form.");
}

140 | getXFDL com.PureEdge.IFSSingleton

 The LocalizationManager Class | 141
The LocalizationManager Class

The LocalizationManager class includes a method that controls which language the API uses to report
errors.

■ Any application that makes calls to the LocalizationManager methods must first import the
following class:

com.PureEdge.i18n.LocalizationManager

■ Many of the methods in the ICS API will throw a generic exception called a UWIException if an
error occurs. Import the following class to any .java files that call methods from the ICS API:

com.PureEdge.error.UWIException

142 | setDefaultLocale com.PureEdge.i18n
setDefaultLocale

Description

This function sets which language (or locale) the API uses when reporting errors. By default, the API
uses English (US).

The API supports the following locales:

Function

public void setDefaultLocale(

String theLocale

) throws UWIException;

Parameters

Returns

Returns nothing if the call is successful, or throws a generic exception (UWIException) if an error
occurs.

Example

In the following example, the language string is checked to determine which locale to use.
setDefaultLocale is then called to set the appropriate locale.

public void setLanguage(String language) throws Exception
{
LocalizationManager theManager;

theManager = IFSSingleton.GetLocalizationManager();
if language.equals("english")

theManager.setDefaultLocale("en_US");
else

theManager.setDefaultLocale("fr_CA");
}

Language Locale Name

English (US) en_US

French (Quebec) fr_CA

Expression Type Description

theLocale String The name of the locale.

 The SecurityManager Class | 143
The SecurityManager Class

The SecurityManager class includes a method for obtaining hash algorithms.

■ To avoid a conflict with an existing Java class (java.lang.SecurityManager), any application that
makes calls to the SecurityManager methods must use the full class name:

com.PureEdge.security.SecurityManager

■ Many of the methods in the ICS API will throw a generic exception called a UWIException if an
error occurs. Import the following class to any .java files that call methods from the ICS API:

com.PureEdge.error.UWIException

144 | lookupHashAlgorithm com.PureEdge.security.SecurityManager
lookupHashAlgorithm

Description

This function retrieves a hash object. Use the hash object to hash shared secrets for the
validateHMACWithHashedSecret function.

Method

public Hash lookupHashAlgorithm(

String algName

) throws UWIException;

Parameters

Returns

A hash object, or throws a generic exception (UWIException) if an error occurs.

Example

The following example uses getSecurityManager to get the Security Manager object.
lookupHashAlgorithm is then called to get the sha1 hash algorithm.

public Hash getHashAlgorithm();
{
com.PureEdge.security.SecurityManager theSecurityManager;
Hash tempHashObject;

theSecurityManager = IFSSingleton.getSecurityManager();

theHash = theSecurityManager.lookupHashAlgorithm("sha1");

return(theHash);
}

Expression Type Description

algName String The name of the hash algorithm you want to retrieve.
The available hash alorithms are sha1 and md5.

 The Signature Class | 145
The Signature Class

The Signature class allows you to get information from Signature objects.

■ Any application that makes calls to the Signature methods must first import the following class:

com.PureEdge.security.Signature

■ Many of the methods in the ICS API will throw a generic exception called a UWIException if an
error occurs. Import the following class to any .java files that call methods from the ICS API:

com.PureEdge.error.UWIException

146 | getDataByPath com.PureEdge.security.Signature
getDataByPath

Description

This function retrieves a piece of data from a signature object.

Method

public String getDataByPath(

String thePath,

boolean tagData,

BooleanHolder encoded,

) throws UWIException;

Parameters

Notes

About Data Paths

Data paths describe the location of information within a certificate, just like file paths describe the
location of files on a disk. You describe the path with a series of colon separated tags. Each tag
represents either a piece of data, or an object that contains further pieces of data (just like directories can
contain files and subdirectories).

For example, to retrieve the version of a certificate, you would use the following data path:

Demographics

Expression Type Description

thePath String The path to the data you want to retrieve. See the
Notes section below for more information on data
paths.

tagData boolean True if the path should be prepended to the data. If the
path is prepended, a colon and space are used as a
separator.

For example, suppose the path is “Issuer: CN” and the
data is “PureEdge”. If true, the path will be prepended,
producing “Issuer: CN: PureEdge”. If false, the path
will not be prepended, and the result will be
“PureEdge”.

encoded BooleanHolder True if the return data is base 64 encoded. The function
returns binary data in base 64 encoding.

com.PureEdge.security.Signature getDataByPath | 147
However, to retrieve the subject’s common name, you first need to locate the subject, then the common
name within the subject, as follows:

Subject: CN

Some tags may contain more than one piece of information. For example, the issuer’s organizational
unit may contain a number of entries. You can either retrieve all of the entries as a comma separated list,
or you can specify a specific entry by using a zero-indexed element number.

For example, the following path would retrieve a comma separated list:

Issuer: UO

While adding an element number of 0 would retrieve the first organizational unit in the list, as shown:

Issuer: UO: 0

Signature Tags

The following table lists the tags available in a signature object. Note that Clickwrap and HMAC
Clickwrap signatures have additional tags (detailed in Clickwrap Signature Tags and HMAC Clickwrap
Tags).

Clickwrap Signature Tags

The following table lists additional tags available in both Clickwrap and HMAC Clickwrap signatures.
Note that HMAC Clickwrap signatures have further tags (detailed in HMAC Clickwrap Tags).

Tag Description

Engine The security engine used to create the signature.

SigningCert The certificate used to create the signature. This is an object that contains
further information, as detailed in Certificate Tags. Note that this object does
not exist for Clickwrap or HMAC Clickwrap signatures.

HashAlg The hash algorithm used to create the signature.

CreateDate The date on which the signature was created.

Demographics A string describing the signature.

LastVerificationStatus A short representing the verification status of the signature. This is updated
whenever the signature is verified. See “verifySignature” on page 124 for a
complete list of the possible values.

Tag Description

TitleText The text for the Windows title bar of the signature dialog box.

MainPrompt The text for the title portion of the signature dialog box.

MainText The text for the text portion of the signature dialog box.

Question1Text The first question in the signature dialog box.

Answer1Text The signer’s answer.

148 | getDataByPath com.PureEdge.security.Signature
Certificate Tags

The following table lists the tags available in a certificate object. Note that Clickwrap and HMAC
Clickwrap signatures do not contain these tags.

Question2Text The second question in the signature dialog box.

Answer2Text The signer’s answer.

Question3Text The third question in the signature dialog box.

Answer3Text The signer’s answer.

Question4Text The fourht question in the signature dialog box.

Answer4Text The signer’s answer.

Question5Text The fifth question in the signature dialog box.

Answer5Text The signer’s answer.

EchoPrompt Text that the signer must echo to create a signature.

EchoText The signer’s response to the echo text.

ButtonPrompt The text that provides instructions for the Clickwrap signature buttons.

AcceptText The text for the accept signature button.

RejectText The text for the reject signature button.

Tag Description

Subject The subject’s distinguished name. This is an object that contains further
information, as detailed in Distinguished Name Tags.

Issuer The issuer’s distinguished name. This is an object that contains further
information, as detailed in Distinguished Name Tags.

IssuerCert The issuer’s certificate. This is an object that contains the complete list of
certificate tags.

Engine The security engine that generated the certificate. This is an object that contains
further information, as detailed in Security Engine Tags.

Version The certificate version.

BeginDate The date on which the certificate became valid.

EndDate The date on which the certificate expires.

Serial The certificate’s serial number.

SignatureAlg The signature algorithm used to sign the certificate.

PublicKey The certificate’s public key.

FriendlyName The certificate’s friendly name.

Tag Description

com.PureEdge.security.Signature getDataByPath | 149
Distinguished Name Tags

The following table lists the tags available in a distinguished name object. Note that Clickwrap and
HMAC Clickwrap signatures do not contain these tags.

HMAC Clickwrap Tags

The following table lists the tags available in HMAC Clickwrap signature. Note that these tags are in
addition to both the regular Signature Tags and the Clickwrap Signature Tags.

Security Engine Tags

The following table lists the tags available in the security engine object:

Tag Description

CN The common name.

E The email address.

T The title.

O The organization.

OU The organizational unit.

C The country.

L The locality.

ST The state.

All The entire distinguished name.

Tag Description

HMACSigner A string indicating which answers store the signer’s ID.

HMACSecret A string indicating which answers store the signer’s secret.

Notarization The notarizing signatures. This is one or more signature objects that contain
further information, as detailed in Signature Tags. There can be any number of
notarizing signatures. Use an element number to retrieve a specific signature. For
example, to get the first notarizing signature use:

Notarization: 0

If no element number is provided, the data will be retrieved from the first valid
notarizing signature found. If no valid notarizing signatures are found, the method
will return null.

Tag Description

Name The name of the security engine.

Help The help text for the security engine.

150 | getDataByPath com.PureEdge.security.Signature
Returns

A string containing the certificate data (null if no data is found), or throws a generic exception
(UWIException) if an error occurs.

Example

The following example uses getSignature to get the signature object from the signature node, and uses
getDataByPath to get the signer’s identity from the signature object. It then calls
validateHMACWithSecret to validate the signature. Finally, it releases the signature object.

public short checkSignature(FormNodeP theSignatureNode, Certificate
theServerCert)
{
Signature theSignatureObject;
String theSecret;
String signerCommonName;
BooleanHolder encodedData;
IntHolder theStatus;
short validation;

theSignatureObject = theSignatureNode.getSignature();

encodedData = new BooleanHolder();

if ((signerCommonName = theSignatureObject.getDataByPath(
"Subject: CN", false, encodedData)) == null)

{
throw new UWIException("Could not determine signer’s name.");

}

/* Include external code that matches the signer’s identity to a shared
secret, and sets theSecret to match. This is most likely a
database lookup. */

theStatus = new IntHolder();

validation = theSignatureNode.validateHMACWithSecret(theSecret,
theServerCert, theStatus);

/* Check the status in case the process required user input. */

if (theStatus.value != SecurityUserStatusType.SUSTATUS_OK)
{

throw new UWIException("Validation required user input.");
}

return(validation);
}

HashAlg A has algorithm supported by the security engine.

Tag Description

 The XFDL Class | 151
The XFDL Class
The XFDL class encapsulates methods that create the root nodes of XFDL forms, as well as methods
that handle administrative tasks related to the Form Library.

■ To use the XFDL methods in an application, import the following class to any .java files that call
XFDL methods:

com.PureEdge.xfdl.XFDL

■ Many of the methods in the ICS API will throw a generic exception called a UWIException if an
error occurs. Import the following class to any .java files that call methods from the ICS API:

com.PureEdge.error.UWIException

152 | create com.PureEdge.XFDL
create

Description

This method will create a new FormNodeP and attach it to the form hierarchy at the indicated location.
Once created, the type and identifier of a FormNodeP cannot be changed.

Note that you can also use setLiteralByRefEx to create FormNodePs at the option level and below.
Using setLiteralByRefEx is often easier and faster than using create.

Method

public FormNodeP create(

FormNodeP aNode,

int where,

String theType,

String theLiteral,

String theFormula,

String theIdentifier

) throws UWIException;

Parameters

Expression Type Description

aNode FormNodeP The new FormNodeP will be placed in the form hierarchy
relative to this node. If null, this creates a new FormNodeP
hierarchy (a new form).

where int A constant that describes the location, relative to the subject
object, in which the new node should be placed:

XFDL.UFL_APPEND_CHILD adds the new node as the last
child of the subject object.

XFDL.UFL_AFTER_SIBLING – adds the new node as a
sibling of the subject object, placing it immediately after that
node.

XFDL.UFL_BEFORE_SIBLING – adds the new node as a
sibling of the subject object, placing it immediately before that
node.

Note: If the parameter aNode is null, then this
parameter should be set to 0.

com.PureEdge.XFDL create | 153
Returns

The new FormNodeP or throws a generic exception (UWIException) if an error occurs.

Example

In the following example, dereferenceEx is used to locate a specific node. create is then used to create
a sibling to that node and to place it directly after that node in the form structure.

private static void addPicLabel(FormNodeP theForm) throws Exception
{
FormNodeP tempNode;
XFDL theXFDL;

theType String The type to assign to the FormNodeP being created. This is
only necessary for page and item nodes. Use null for all other
nodes. The type cannot be changed after the node has been
created.

If you are creating a non-XFDL node, you must also include
the namespace that the node should belong to, as shown:

<namespace prefix>:<type>

For example:

custom:myItem

If you do not provide a namespace, the function will assign the
default namespace for the form.

theLiteral String The literal to assign to this FormNodeP. null is valid.

theFormula String The formula to assign to this FormNodeP. null is valid.

theIdentifier String The identifier to assign to this FormNodeP. The identifier
cannot be changed after the node has been created. null is
valid.

If you are creating an option or argument level node, this must
also include the namespace the node should belong to. Use
the following format:

<namespace prefix>:<type>

For example:

custom:myOption

If you do not provide a namespace, the function will assign the
default namespace for the form.

Expression Type Description

154 | create com.PureEdge.XFDL
if ((theXFDL = (XFDL)IFXMan.lookupInterface(XFDL.XFDL_INTERFACE_NAME,
XFDL.XFDL_CURRENT_VERSION, 0, null, null)) == null)
throw new UWIException("Could not find interface");

/* Call theForm.dereference to locate the node for the gender label item.
*/

if ((tempNode = theForm.dereferenceEx(null, "PAGE1.GENDERLABEL", 0,
FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not locate GENDERLABEL node.");

}
tempNode = theXFDL.create(tempNode, XFDL.UFL_AFTER_SIBLING,

"label", null, null,"PICLABEL")
}

com.PureEdge.XFDL getEngineCertificateList | 155
getEngineCertificateList

Description

This function locates all available certificates for a particular signing engine.

Method

public Certificate [] getCertificateList(

String engineName,

IntHolder theStatus,

) throws UWIException;

Parameters

Returns

An array containing the list of certificates objects.

Example

The following method uses getXFDL and getEngineCertificateList to obtain get a list of valid
certificates for the CryptoAPI signing engine. Next, the method cycles through the returned certificates
and uses getDataByPath on the certificates to find the certificate with a common name of “PureEdge
Server”. getDataByPath is then used on the signature object to retrieve the common name from the
existing signature, which is used to retrieve the a shared secret from a database. The method then uses
validateHMACWithSecret to validate the signature and notarize it using the server certificate.

Expression Type Description

engineName String The name of the signing engine. Valid signing engines include:
Generic RSA, CryptoAPI, Netscape, and Entrust. (Note that
Generic RSA is the union of CryptoAPI and Netscape.)

theStatus IntHolder This is a status flag that reports whether the operation was
successful. Possible values are:

SecurityUserStatusType.SUSTATUS_OK — the operation was
successful.

SecurityUserStatusType.SUSTATUS_CANCELLED — the
operation was cancelled by the user.

SecurityUserStatusType.SUSTATUS_INPUT_REQUIRED — the
operation required user input, but could not receive it (for example,
it was run on a server with no user).

156 | getEngineCertificateList com.PureEdge.XFDL
public short serverNotarize(FormNodeP theSignatureNode) throws
UWIException
{
XFDL theXFDL;
IntHolder theCertStatus;
IntHolder theSigStatus;
Certificate [] certList;
Signature theSignatureObject;
String theSecret;
String signerCommonName;
booleanHolder encodedData;
int certCount;
int correctCert = -1;
int i;
short validation;

if ((theXFDL = IFSSingleton.getXFDL()) == null)
{

throw new Exception("Could not find interface");
}

theCertStatus = new IntHolder();

if ((certList = theXFDL.getEngineCertificateList("CryptoAPI",
theCertStatus)) == null)

{
throw new Exception("Could not locate any certificates.");

}

if (theStatus.value == SecurityUserStatusType.SUSTATUS_INPUT_REQUIRED)
{

throw new UWIException("User input required to sign form.");
}

/* Loop through the certificates to find the PureEdge Server
certificate */

certCount = certList.length;

encodedData = new BooleanHolder();

for (i=0; i<certCount; i++)
{

signerCommonName = certList[i].getDataByPath("Subject: CN", false,
encodedData);

if (signerCommonName.equals("PureEdge Server"))
{

correctCert = i;
break;

}
}

if (correctCert == -1)
{

com.PureEdge.XFDL getEngineCertificateList | 157
throw new UWIException("Could not locate required certificate");
}

/* Get the signature object. */

theSignatureObject = theSignatureNode.getSignature();

/* Get the signer’s common name from the signature object */

encodedData = new BooleanHolder();

if ((signerCommonName = theSignatureObject.getDataByPath(
"Subject: CN", false, encodedData)) == null)

{
throw new UWIException("Could not determine signer’s name.");

}

/* Include external code that matches the signer’s identity to a shared
secret, and sets theSecret to match. This is most likely a
database lookup. */

theSigStatus = new IntHolder();

/* Validate the signature and notarize using the server certificate */

validation = theSignatureNode.validateHMACWithSecret(theSecret,
certList[correctCert], theSigStatus);

/* Check the status in case the process required user input. */

if (theStatus.value != SecurityUserStatusType.SUSTATUS_OK)
{

throw new UWIException("Validation required user input.");
}

return(validation);
}

158 | isDigitalSignaturesAvailable com.PureEdge.XFDL
isDigitalSignaturesAvailable

Description

This method is used to determine whether digital signatures are available on this computer.

Method

public boolean isDigitalSignaturesAvailable() throws UWIException;

Parameters

There are no parameters for this method.

Returns

true if digital signatures are available on this computer; otherwise, false. On error, the method throws a
generic exception (UWIException).

Example

In the following example, isDigitalSignaturesAvailable is used to determine whether or not digital
signatures are available. A message is then printed which indicates the availability of digital signatures.

private static void sigsAvailable() throws UWIException
{
XFDL theXFDL;

if ((theXFDL = (XFDL)IFXMan.lookupInterface(XFDL.XFDL_INTERFACE_NAME,
XFDL.XFDL_CURRENT_VERSION, 0, null, null)) == null)
throw new Exception(“Could not find interface”);

if (theXFDL.isDigitalSignaturesAvailable()== true)
{

System.out.println("Digital signatures are available.");
}
else
{

System.out.println("Digital signatures are not available.");
}

}

com.PureEdge.XFDL readForm | 159
readForm

Description

This method will read a form into memory from the specified file or stream.

Method

READING A FILE:

public FormNodeP readForm(

String theForm,

int flags

) throws UWIException;

READING A STREAM:

public FormNodeP readForm(

InputStream theStream,

int flags

) throws UWIException;

Parameters

Expression Type Description

theForm String This is the path and filename of the source file on the local
disk.

theStream InputStream This is the stream that contains the form data.

160 | readForm com.PureEdge.XFDL
Returns

Returns a new FormNodeP that is the root node of the form, or throws a generic exception
(UWIException) if an error occurs.

Notes

Duplicate Scope IDs

If a form contains duplicate scope IDs (for example, two items on the same page with the same SID),
readForm will fail to read the form and will return an error. This enforces correct XFDL syntax, and
eliminates certain security risks that exist when duplicate scope IDs appear in signed forms.

Digital Signatures

When a form containing one or more digital signatures is read, the signatures will be verified. The result
of the verification is stored in a flag that can be checked by calling getSignatureVerificationStatus.

Note that this flag is only set by readForm, and its value will not be adjusted by changes made to the
form after it has been read. This means that calls such as setLiteralEx may actually break a signature
(by changing the value of a signed item), but that this will not adjust the flag’s value. To verify a
signature after changes have been made to a form, it is best to use verifyAllSignatures.

flags int The following flags cause special behaviors. If using multiple
fags, combine them using a bitwise OR. For example:

XFDL.UFL_AUTOCOMPUTE_OFF |
XFDL.UFL_AUTOCREATE_FORMATS_OFF

0 — no special behavior.

XFDL.UFL_AUTOCOMPUTE_OFF — Reads the form into
memory, but disables the compute system so that no
computes are evaluated.

XFDL.UFL_AUTOCREATE_CONTROLLED_OFF — Reads
the form into memory, but disables the creation of all options
that are maintained only in memory (for example, itemnext,
itemprevious, pagenext, pageprevious, and so on).

XFDL.UFL_AUTOCREATE_FORMATS_OFF — Reads the
form into memory, but disables the evaluation of all format
options.

XFDL.UFL_SERVER_SPEED_FLAGS — Turns off the
following features: computes, automatic formatting, duplicate
sid detection, the event model, and relative page and item
tags (for example, itemprevious, itemnext, and so on). This is
intended to decrease server processing times.

Expression Type Description

com.PureEdge.XFDL readForm | 161
Note that when a form is signed, all signed computes are frozen at their start value (regardless of
whether the compute engine is disabled).

Example

The following example demonstrates the use of readForm to load a form into memory, and then returns
to the root node of the form.

private static FormNodeP loadForm() throws Exception
{
XFDL theXFDL;
formNodeP theForm;

if ((theXFDL = IFSSingleton.getXFDL()) == null)
throw new Exception("Could not find interface");

if ((theForm = theXFDL.readForm("formSample.xfd", 0)) == null)
throw new Exception("Could not load form.");

return(theForm);
}

162 | readForm com.PureEdge.XFDL

 Introduction to the FCI Library | 163
Introduction to the FCI Library

The Function Call Interface (FCI) API provides a means for creating extremely powerful form
applications in a simple and elegant manner.

The FCI Library is a collection of methods for developing custom-built functions that form developers
may call from XFDL forms. By creating custom functions, you can extend the capabilities of forms
without requiring an upgrade to either your forms software or the form description language (XFDL).
Using the methods from this library you can:

■ Create packages of functions for forms.

■ Set up the packages as extensions for ICS products, such as Viewer or Designer.

■ Determine how and when the functions are used. For example, you can specify that a function
should run when a form opens, when it closes and so on.

About Functions, Packages and Extensions
The purpose of the FCI is to make the functionality of forms extensible without requiring updates to
your forms driver software. This API allows you to create self-contained modules called IFX Extensions
that provide packages of functions for use in XFDL forms.

Note: The forms driver software is any application that initializes and calls on the ICS API.

Functions can be used almost anywhere in an XFDL form; the appropriateness of their use depends
mainly on their behavior. For instance the XFDL Specification contains a default package of functions
called system. Every application built with the API version 4.4 or greater can use these functions.

Functions are grouped together to form packages. When you call a function from a form, you must
include the function’s package name in the call. For example, the function beep is part of the package
called my_funcs. To call the beep function from a form and assign the result to the form option do_beep
you would type the following:

<label sid = "do_beep">
<value compute = "my_funcs.beep()"></value>

</label>

The most common use of a function is to return a value that is used to set a form option, such as the
value of a field. For example, the toupper function in the system package, which converts a string to
upper case and returns the result, might be used to set the value of a particular form field. This method
could take as its sole argument the value of a label elsewhere on the form (or on another form) and
convert it to upper case as follows:

<label sid = "SomeLabel">
<value>"I am a label"</value>

</label>

<field sid = "SomeField">
<size>

<ae>20</ae>
<ae>1</ae>

164 | About the Function Call Interface (FCI)
</size>
<value compute = "system.toupper(SomeLabel.value)"></value>

</field>

To create a package of functions you must create an IFX extension. The IFX extension provides services
for function calls via a FunctionCall object. The FunctionCall object contains your package(s) of
custom-built functions.

Refer to the “The FCI Extension Architecture” on page 165 for more information. Or, for a practical
guide to building your own extensions and functions refer to the section called “Getting Started with the
FCI Library” on page 169.

Use the following rules to help you define your own packages and extensions:

■ Each package can contain multiple functions.

■ Each extension can contain multiple packages, however it is easier to define one package per
extension.

■ All package names must contain an underscore. PureEdge reserves all other package names. Refer
to page 176 for more information.

■ The XFDL Specification contains a default package of functions called system. Every application
built with the API version 4.4 or greater can use these functions.

■ You cannot add to the system package of functions. For details on the system functions, see the
XFDL Specification.

Once you have created your IFX extensions you can embed them directly into XFDL forms, or you can
distribute them to users as Java Archive files (JARs) or as ZIP files. Refer to “Distributing IFX
Extensions for Testing or Use” on page 181 for more information.

Note: In order to view the forms provided with this API, you must have a licensed or evaluation
copy of ICS Viewer installed. To download an evaluation copy of the Viewer, refer to the PureEdge
web site at: www.PureEdge.com.

About the Function Call Interface (FCI)
The FCI is itself an IFX extension. It is currently only available for Windows 32-bit applications. A set
of Java wrapper classes, supplied as a Java Archive file (JAR file) or ZIP file, provide a Java interface
to the DLL.

 About the Function Call Interface (FCI) | 165
How the Form and FCI Libraries Work Together

The Form Library provides developers with tools for accessing and manipulating XFDL forms as
structured data types. For instance, methods in the Form Library will provide your applications with a
means for reading and writing forms, retrieving information contained in form elements or assigning
information to the elements of a form. For more information about the Form Library refer to page.

The FCI Library of methods allows you to create an IFX extension structure that contains one or more
packages of your custom functions.

Once you have set up the framework for your custom functions you can use Java system methods, Form
Library methods or even other FCI methods to implement the details of each function.

The FCI Extension Architecture

IFX extensions can exist in any of the following locations:

■ The extensions folder of the ICS product that will use the extension (for example, ICS Viewer or
Designer products).

■ The API extensions folder, <Windows System>\PureEdge\extensions.

■ The Java source folder, <Windows System>\PureEdge\java\source.

■ Enclosed within XFDL forms.

166 | About the Function Call Interface (FCI)
When the Forms System is initialized, the API checks for IFX extensions. If it finds any, it calls the
initialization method for each extension and passes each method an object called the IFX Manager.

As part of the initialization, those extensions that provide a function call interface create one or more
FunctionCall objects.

Then, each FunctionCall object requests a FunctionCallManager object from the IFX Manager.

 About the Function Call Interface (FCI) | 167
Each FunctionCall object registers itself with the IFX Manager as a function call and then registers
your custom-built functions and corresponding packages with the Function Call Manager.

The final result is an IFX extension containing a registered FunctionCall object. The registered
FunctionCall object contains your package of custom functions.

168 | About the Function Call Interface (FCI)
When a function is called in a form, the forms driver requests the package and function from the API.
The API will use the Function Call Manager to locate the FunctionCall object that contains the
requested function and evaluate it.

Note: The forms driver software is any application that initializes and calls the ICS API.

 Getting Started with the FCI Library | 169
Getting Started with the FCI Library
This section acts as both a reference and a tutorial on the Function Call Interface Library. A series of
practical examples is provided which you may work through to build a package of functions called
sample_package. This section shows you how to build sample_package and one function called
convertDate that converts a date to a language and format specific to another country. Try adding other
functions to the package for more practice using the FCI Library of methods.

Although the FCI Library contains many methods, you only need to use a few of them to create a simple
package of functions. These are:

■ lookupInterface

■ registerInterface

■ registerFunctionCall

■ evaluate

■ help

The remaining FCI methods allow you to customize the behavior of your functions and extensions. For
example, you can attach additional information to a particular extension, or get a list of currently regis-
tered extensions.

Refer to the “FCI Library Quick Reference Guide” on page 185 for a detailed description of the classes
and methods used in this API.

Note: Before you can build extensions and functions using the FCI methods, you must set up your
development environment. Refer to the ICS API Installation and Setup Guide for more information.

Creating Extensions with the FCI methods
The following table is a guide for creating extensions using the Function Call Interface. Refer to the
corresponding page numbers for more details:

Procedure Page

Install the Java Edition of the ICS API and related files, as outlined in the ICS API
Installation and Setup Guide.

N/A

Set up the IFX extension. 170

Create the Extension class. 170

Create the extension initialization method. 171

Create a new FunctionCall object. 171

Set up the function call. 172

Create the FunctionCall class. 172

Retrieve the Function Call Manager. 173

170 | Setting up the IFX Extension
Setting up the IFX Extension

Creating the Extension class

When the Forms System is initialized, the ICS API checks for existing extensions and calls the
initialization method (extensionInit) for each extension. Your first step in creating a function call is to
create an Extension class that generates a new FunctionCall object. Follow the procedure below to
create the Extension class called FCIExtension:

1. Create a new Java source file called FCIExtension.java.

2. Define the Java package. For example:

com.yourcompany.samples;

3. Import the following files and any other required files to any Java files that call FCI methods.
These lines must be placed before any class or interface definitions:

import com.PureEdge.ifx.IFX;
import com.PureEdge.ifx.ExtensionImplBase;
import com.PureEdge.ifx.Extension;
import com.PureEdge.xfdl.FunctionCall;
import com.PureEdge.xfdl.FunctionCallManager;
import com.PureEdge.xfdl.FormNodeP;
import com.PureEdge.IFSUserDataHolder;
import com.PureEdge.error.UWIException;

Note: If you are using methods from the Form Library, you must import the necessary packages.
Refer to page page 25 for more information.

4. Create an Extension class that extends the pre-defined super class
com.PureEdge.ifx.ExtensionImplBase and implements the pre-defined interface Extension.

■ In the following example the name of the extension is FCIExtension.

public class FCIExtension extends ExtensionImplBase implements
Extension
{

/* Additional code removed */
}

Register each FunctionCall object with the IFX Manager. 174

Register your package(s) of custom functions with the Function Call Manager. 175

Implement your custom functions. 176

Provide help information for each of your functions. 178

Build the IFX extension. 179

Distribute the IFX extension for Testing or Use. 181

Procedure Page

 Setting up the IFX Extension | 171
Note: It is a good idea for your Extension class to extend the super class
com.PureEdge.ifx.ExtensionImplBase since the superclass takes care of many housekeeping
methods which must be implemented.

Implementing the extension initialization method

The ICS API will initialize an IFX extension by calling the extensionInit method and passing the
method an object known as the IFX Manager.

5. Implement the extensionInit method as part of the Extension class.

■ extensionInit is the main function within the Extension interface. It is responsible for the
registration of all the services that the extension provides.

■ The following is an example of the extensionInit method in the FCIExtension class.

public class FCIExtension extends ExtensionImplBase implements
Extension
{

public void extensionInit(IFX IFXMan) throws UWIException
{

/* Additional code removed */
}

}

■ The IFXMan object represents the IFX Manager. Through this object all other objects and
services can be reached.

■ UWIException is a generic exception.

Creating a new FunctionCall object

The extensionInit method creates a new FunctionCall object that contains your custom-built
functions.

To create a new FunctionCall object you must define a FunctionCall class that contains your custom
functions. Refer to “Setting up the FunctionCall Class” on page 172 for more details.

6. Declare a new FunctionCall object before you create it in the extensionInit method.

■ The following example from the FCIExtension class declares a FunctionCall object called
theFunctionObject.

public class FCIExtension extends ExtensionImplBase implements
Extension
{
private FunctionCall theFunctionObject;

public void extensionInit(IFX IFXMan) throws UWIException
{

/* Additional code removed */
}

}

172 | Setting up the FunctionCall Class
7. Create a new FunctionCall object inside the extensionInit method, by calling the FunctionCall
class constructor that you will build in the next section.

■ In the following example, extensionInit creates a new FunctionCall object by calling the
FunctionCall class constructor FciFunctionCall and passing it the IFX Manager.

public class FCIExtension extends ExtensionImplBase implements
Extension
{
private FunctionCall theFunctionObject;

public void extensionInit(IFX IFXMan) throws UWIException
{

this.theFunctionObject = new FciFunctionCall(IFXMan);
}

}

Setting up the FunctionCall Class

Creating a FunctionCall class

The FunctionCall class contains definitions for your custom functions. It also registers the
FunctionCall object and each of the custom functions that it supports with the Forms System so that the
functions and packages that it contains will be recognized.

8. Create a new Java source file called FciFunctionCall.java.

9. Define the Java package. For example:

com.yourcompany.samples;

10. Import the following API packages:

com.PureEdge.ifx.IFX
com.PureEdge.xfdl.FormNodeP
com.PureEdge.xfdl.FunctionCallManager
com.PureEdge.xfdl.FunctionCallImplBase
com.PureEdge.xfdl.FunctionCall
com.PureEdge.error.UWIException

11. Import any other required files. In this case the following files are needed to implement the
convertDate function:

java.util.Date
java.util.Locale
java.text.DateFormat
java.text.SimpleDateFormat
java.text.ParseException

12. Create a FunctionCall class that extends the pre-defined superclass
com.PureEdge.xfdl.FunctionCallImplBase and implements the pre-defined interface
FunctionCall.

■ In the following example the name of the FunctionCall class is FciFunctionCall.

 Setting up the FunctionCall Class | 173
public class FciFunctionCall extends FunctionCallImplBase implements
FunctionCall
{

/* Additional code removed */
}

13. Define a unique identification number for each custom function that you are going to create using
the FCI.

■ In the following example, FciFunctionCall contains a function called convertDate that
converts any date to the date format and language of a specific country. The convertDate
function in FciFunctionCall has an ID number of 1:

public class FciFunctionCall extends FunctionCallImplBase implements
FunctionCall
{

public static final int CONVERTDATE = 1;

/* Additional code removed */
}

14. Define a FunctionCall class constructor that takes as its parameter the IFX Manager.

■ In the following example, the constructor for the FciFunctionCall class is FciFunctionCall.

public class FciFunctionCall extends FunctionCallImplBase implements
FunctionCall
{

public static final int CONVERTDATE = 1;

public FciFunctionCall(IFX IFXMan) throws UWIException
{

/* Additional code removed */
}

}

■ The IFXMan object represents the IFX Manager. Through this object all other objects and
services can be reached.

■ UWIException is a generic exception.

Retrieving the Function Call Manager

The Function Call Manager is used to handle services specific to function calls, such as handling
requests for a particular function. The Function Call Manager is represented by a
FunctionCallManager object.

15. Declare the Function Call Manager before requesting it from the IFX Manager.

■ In the following example, the FciFunctionCall constructor declares the Function Call
Manager with the type FunctionCallManager.

public FciFunctionCall(IFX IFXMan) throws UWIException
{

FunctionCallManager theFCM;
}

174 | Setting up the FunctionCall Class
16. Use the IFSSingleton method getFunctionCallManager in the function call constructor to request
a FunctionCallManager object from the IFX Manager.

■ The getFunctionCallManager call requests the Function Call Manager from the IFX
Manager.

■ The return value of the getFunctionCallManager method is a generic object, and must be
typecast to the object type you have requested. In this case, the object returned from
getFunctionCallManager is typecast to FunctionCallManager.

■ In the following example the FciFunctionCall constructor requests the Function Call Manager
(theFCM). Notice that before the Function Call Manager is returned, it is explicitly cast to the
type FunctionCallManager.

public FciFunctionCall(IFX IFXMan) throws UWIException
{
FunctionCallManager theFCM;

if ((theFCM = IFSSingleton.getFunctionCallManager()) == null)
throw new UWIException("Needed Function Call Manager");

}

Note: For detailed information about the getFunctionCallManager method, including a
description of its parameters, refer to “getFunctionCallManager” on page 136.

Registering the FunctionCall object with the IFX Manager

Each FunctionCall object registers itself with the IFX Manager as an interface that provides function
call support.

17. In the FunctionCall class constructor, register the function call with the IFX Manager using the
method registerInterface.

■ In the following example the FciFunctionCall constructor uses the registerInterface method
to register itself with the IFX Manager as a FunctionCall object:

public FciFunctionCall(IFX IFXMan) throws UWIException
{
FunctionCallManager theFCM;

if ((theFCM = IFSSingleton.getFunctionCallManager()) == null)
throw new UWIException("Needed Function Call Manager");

IFXMan.registerInterface(this,
FunctionCall.FUNCTIONCALL_INTERFACE_NAME,
FunctionCall.FUNCTIONCALL_CURRENT_VERSION,
FunctionCall.FUNCTIONCALL_MIN_VERSION_SUPPORTED,
0x01000300, 0, null, theFCM.getDefaultListener());

}

Note: For detailed information about the registerInterface method, including a description of its
parameters, refer to “registerInterface” on page 203.

 Setting up the FunctionCall Class | 175
Registering your packages of custom functions with the Function Call
Manager

18. Use the FunctionCallManager method registerFunctionCall in the function call constructor to
register each of your custom functions and corresponding package(s) with the Function Call
Manager.

■ The FCI allows you to assign a version number to each function that you create. This allows
you to provide upgrades to single functions in IFX extensions you have already distributed to
users. For more information see the next section.

■ When registering your package(s) of functions with the Function Call Manager, be aware of
the ICS API package naming conventions. For more information see the next section.

■ You must register each of your custom functions separately. So, if you are registering three
functions with the Function Call Manager, you must call registerFunctionCall three times.

■ In the following example, the FciFunctionCall constructor uses the registerFunctionCall
method to register the convertDate function with the Function Call Manager:

public FciFunctionCall(IFX IFXMan) throws UWIException
{
FunctionCallManager theFCM;

if ((theFCM = IFSSingleton.getFunctionCallManager()) == null)
throw new UWIException("Needed Function Call Manager");

IFXMan.registerInterface(this,
FunctionCall.FUNCTIONCALL_INTERFACE_NAME,
FunctionCall.FUNCTIONCALL_CURRENT_VERSION,
FunctionCall.FUNCTIONCALL_MIN_VERSION_SUPPORTED,
0x01000300, 0, null, theFCM.getDefaultListener());

theFCM.registerFunctionCall(this, "sample_package",
"convertDate", FciFunctionCall.CONVERTDATE,
FunctionCall.FCI_FOLLOWS_STRICT_CALLING_PARAMETERS,
"S,S", 0x01000300, "Converts a date to a different
locale");

}

Note: For detailed information about the registerFunctionCall method, including a description of
its parameters, refer to “registerFunctionCall” on page 212.

About Function Version Numbers

Along with registering your package(s) of custom functions with the Function Call Manager, the
registerFunctionCall method is also used to specify a version number for each function that you
create. In the previous example, the ConvertDate function is registered with the version number
0x01000300.

Assigning a version number to each function allows you to provide upgrades to single functions in
extensions you have already distributed to users.

176 | Setting up the FunctionCall Class
For example, if you distributed an extension containing a package of 50 functions for your application
and then wanted to change the behavior of one of the functions, you could:

■ Write a new extension containing just the upgraded function.

■ Register the new function using registerFunctionCall, with the same package name and function
name as the original function but with a higher version number.

■ Distribute the new extension to users.

When the ICS API initializes all of the IFX extensions it would find two functions with the same
package name and function name. It would deregister the one with the lower version number thereby
updating your application.

Note: For more information about using version numbers, refer to “Defining a Version Number” on
page 213.

Package Naming Conventions

The main purpose of package names is to distinguish the functions in a package from those in other
packages that could potentially have the same names. All packages you create must contain an
underscore in their names. For example, the convertDate function belongs to a package called
sample_package.

■ Choose a name that aptly describes the set of functions you are creating and is distinct enough to be
unique within its realm of usage.

■ The package name is an internal logical element of the ICS API.

■ Package names are case sensitive.

■ All package names you define must contain an underscore.

Note: A group of functions is provided with the Forms System software as the system package. The
system package is reserved for system functions that are defined in the XFDL Specification. You may
not add to the system package or call your packages by the name system.

Implementing your custom functions

19. Implement your custom functions as part of the FunctionCall method evaluate.

■ The FunctionCall class must implement the evaluate method since it is defined as part of the
FunctionCall interface.

■ evaluate is called whenever a particular function needs to be executed.

■ In the following example, the convertDate function is implemented as part of evaluate in the
FunctionCall class FciFunctionCall.

public class FciFunctionCall extends FunctionCallImplBase implements
FunctionCall
{
/* Additional Code Removed */

public void evaluate(String thePackageName,

 Setting up the FunctionCall Class | 177
String theFunctionName, int theFunctionID,
int theFunctionInstance, short theCommand,
com.PureEdge.xfdl.FormNodeP theForm,
com.PureEdge.xfdl.FormNodeP theComputeNode,
com.PureEdge.IFSUserDataHolder theFunctionData,
com.PureEdge.IFSUserDataHolder theFunctionInstanceData,
com.PureEdge.xfdl.FormNodeP [] theArgList,
com.PureEdge.xfdl.FormNodeP theResult) throws UWIException

{
String theDateString;
String theLocaleString;
String theAnswerString = null;
Date theDate = null;
Locale theLocale;
DateFormat theDateFormat;

if (theCommand == FunctionCall.FCICOMMAND_RUN){

/* Now we’ll switch on the function ID. This makes it easy for a
single FunctionCall object to support multiple functions. */

if (theFunctionID == FciFunctionCall.CONVERTDATE)
{

/* First, we’ll grab the string values of the two arguments.
Since we indicated that this method has two parameters and
that it must have two parameters
(FCI_FOLLOWS_STRICT_CALLING_PARAMETERS) when we registered
it, we don’t have to check to see if we actually received
both parameters, since this code won’t even be called unless
the caller used the right number of parameters. */

theDateString = theArgList[0].getLiteralEx(null);
theLocaleString = theArgList[1].getLiteralEx(null);

/* Now we perform the conversion. */

if (theLocaleString.length() != 5)
theAnswerString = "Locale must be 2 characters, " +

"a space and 2 characters";
else
{

theLocale = new Locale(theLocaleString.substring(0, 2),
theLocaleString.substring(3));

if ((theDateFormat = DateFormat.getDateInstance(
DateFormat.LONG, theLocale)) == null)
theAnswerString = "Unrecognized locale";

else
{

try
{

if ((theDate = new SimpleDateFormat
("yyyyMMdd").parse(theDateString)) == null)
theAnswerString = "Unable to parse";

178 | Setting up the FunctionCall Class
}

catch (ParseException ex)
{

theAnswerString = ex.toString();
}

if (theAnswerString == null)
theAnswerString = theDateFormat.format(theDate);

}
}

/* Lastly, we’ll store the result in the result node */

theResult.setLiteralEx(null, theAnswerString);

}
}

/* Additional Code Removed */
}

Note: For detailed information about the evaluate method, including a description of its
parameters, refer to “evaluate” on page 192.

Providing help information for each of your functions

By using the method help, you can provide help information to form designers within a development
environment (for example, ICS Designer). Use help to help form designers choose and use the correct
functions.

20. Provide in-depth help information for each of the functions you create by implementing the
FunctionCall method help.

■ The FunctionCall class must implement the help method since it is defined as part of the
FunctionCall interface.

■ In the following example, help provides help information for the convertDate function in the
class FciFunctionCall.

public class FciFunctionCall extends
com.PureEdge.xfdl.FunctionCallImplBase implements FunctionCall
{

/* Additional Code Removed */

public void help(String thePackageName,
String theFunctionName, int theFunctionID,
com.PureEdge.IFSUserDataHolder theFunctionData,
com.PureEdge.StringHolder theQuickDesc,
com.PureEdge.StringHolder theFunctionDesc,
com.PureEdge.StringHolder theSampleCode,
com.PureEdge.StringArrayHolder theArgsNameList,
com.PureEdge.StringArrayHolder theArgsDescList,
com.PureEdge.ShortArrayHolder theArgsFlagList,

 Building the IFX Extension | 179
com.PureEdge.StringHolder theRetValDesc,
com.PureEdge.ShortHolder theRetValFlag) throws
UWIException

{
switch(theFunctionID)
{
case FciFunctionCall.CONVERTDATE:

theQuickDesc.value = "Converts a date to a different " +
"locale";

theFunctionDesc.value = "This function takes a date in " +
"the first parameter and a locale in the second " +
"parameter and returns the date formatted for the " +
"specified locale";

theSampleCode.value = "\t <LABEL SID = \"LABEL1\"> \n" +
"\t\t <VALUE COMPUTE = "sample_package.convert " +
"(\’19980101\’, \’french\’)"></VALUE> \n" +
"\t\t <SIZE CONTENT = \"ARRAY\"> \n" +
"\t\t\t <AE>10</AE> \n" +
"\t\t\t <AE>1</AE> \n" +
"\t\t </SIZE> \n" +
"\t </LABEL> \n";

theArgsNameList.value = new String[2];
theArgsNameList.value[0] = "theDate";
theArgsNameList.value[1] = "theLocale";
theArgsDescList.value = new String[2];
theArgsDescList.value[0] = "The english date";
theArgsDescList.value[1] = "The locale";
theRetValDesc.value = "The formatted date";
break;

}
}

}

Note: For detailed information about the help method, including a description of its parameters,
refer to “help” on page 196.

Building the IFX Extension
Once you have generated the Java source files for your Extension class, you must compile the source
code to create the IFX extension.

■ Use a Java compiler that is supported by this API to compile your Extension class files. Refer to
the ICS API Installation and Setup Guide for more information on compatible development
environments.

180 | Testing and Distributing IFX Extensions
■ Before building your IFX extension you should have a collection of .java files that represent your
extension. After compiling the .java files you will have a set of files with the same name as the
.java files but with the extension .class.

■ For example, after compiling the source code for the Extension class FCIExtension.java and the
FunctionCall class FciFunctionCall.java your Java compiler will create two corresponding files:
FCIExtension.class and FciFunctionCall.class. These two class files make up the IFX extension
called FCIExtension.

■ The details of compiling your source code are not included in this manual. Consult your Java
documentation for specific information on how to use your Java compiler.

Note: If you are compiling extensions under the Sun VM but want them to run in the Microsoft VM,
you must include the following flag in your javac command: -target 1.1

Testing and Distributing IFX Extensions
Once you have created your IFX extensions you can package them for testing or distribution by using
either of the following methods:

■ Package the .class files into a single Java Archive (JAR) file and distribute the JAR file. Refer to
“Distributing IFX Extensions for Testing or Use” on page 181 for more details.

■ Package the .class files into a single Java Archive (JAR) file and embed the JAR file directly into
your XFDL forms. Refer to “Embedding IFX Extensions in XFDL Forms” on page 182 for more
details.

Packaging IFX Extensions as JAR Files

Once you have created your IFX extensions you can package the .class files into a single Java Archive
(JAR) file and distribute the file. This means that you can package multiple extensions into one JAR
file for distribution.

Before building the JAR file, you must create a manifest that indicates which classes in the JAR file are
IFX extensions.

21. Using your favorite text-editor, create a manifest file for the IFX extensions you wish to package in
the JAR file.

■ The manifest file has the file extension .mf. For example, the manifest file for FCIExtension
is called:

FCI.mf

■ The first line of the manifest must include the manifest-version number. See the following
example for the correct syntax.

 Testing and Distributing IFX Extensions | 181
■ The manifest file is broken down into sections, where each section represents a particular
Extension class and its attribute as an IFX extension.

■ The class listed in each section of the manifest file is the class that implements the Extension
interface. In the following example FCIExtension.class implements FCIExtension.

■ For example, the manifest file for FCIExtension will have the following syntax and format
(notice that there is a space after every colon)

Manifest-Version: 1.0

Name: com/yourcompany/samples/FCIExtension.class
IFS-Extension: True

22. Create a JAR file from the .class files that make up your IFX extension.

■ Use the following syntax to create the JAR file:

jar –cvfm destination.jar manifest.mf YourExtension.class
YourFunctionCall.class

■ Optionally, you can replace the class names with the root folder for your package. This will
include all classes that are defined in that package. For example, to create a JAR file called
FormIFX for FCIExtension, you would type the following:

jar –cvfm FormIFX.jar FCI.mf com

Distributing IFX Extensions for Testing or Use

Once you have packaged your IFX Extension, you can install it for testing or distribute it for general
use. In either case, you place the IFX Extension in the same location.

To distribute your IFX extensions so that they may be used by a specific ICS product:

23. Copy the JAR file to the Extensions folder of the ICS product that will use the IFX extension.

■ For example, in order for the convertDate function to work in the Viewer, you would copy the
file FormIFX.jar to the following folder:

Viewer program folder\Extensions

To distribute your IFX extensions so that they may be used by all ICS products:

24. Copy the JAR file to the Forms System Global Extensions folder.

■ For example, in order for the convertDate function to work in the Viewer, you would copy the
file FormIFX.jar to the following folder:

C:\<Windows System>\PureEdge\extensions

Note: For more information about creating Java Archive files and manifest files refer to your Java
documentation.

182 | Testing and Distributing IFX Extensions
Embedding IFX Extensions in XFDL Forms

You can embed an IFX extension in any XFDL form. The extension will run in ICS Viewer, but will not
be processed by ICS API. This means that server-side applications will not run an embedded IFX.

To embed an IFX extension in a form:

1. Create a JAR file that contains your IFX extensions.

2. Use ICS Designer to enclose the JAR file in a form.

Note: For more information about embedding IFX extensions in XFDL forms using Designer refer
to the Designer Help.

About MIME Types

JAR files that are enclosed in forms must have the MIME type set to:

■ application/uwi_jar

The corresponding XFDL code will look like this:

<mimetype>
application/uwi-jar

</mimetype>

If you are using the ICS Designer to enclose a JAR file into a form the Designer will set the MIME type
for you.

It is possible to override the default java virtual machine for an enclosed JAR file. This will require that
you modify the MIME type in your XFDL file with a text editor. For example, to specify the Microsoft
Java virtual machine, edit your code to look like this:

<mimetype>
application/uwi-jar; vm="Microsoft VM"

</mimetype>

Remember that XFDL code is case sensitive. Therefore, be sure that “vm=” is in lower case.

Location of Installed IFX Extensions (Security Issues)

The location in which an IFX extension is installed determines how much access the IFX extension has
to the user’s system resources (for example, user’s system files). The following table summarizes the
security features that are set when an IFX extension is installed in a particular location.

Location of Installed IFX Extension Security Features

The IFX extension is installed as a JAR or ZIP
file in the Extensions folder of the ICS product
that will use the extension.

The IFX extension has full access to the user’s
system resources.

The IFX extension is installed as a JAR or ZIP
file in the Forms System Global Extensions
folder:
C:\<Windows System>\PureEdge\extensions

The IFX extension has full access to the user’s
system resources.

 Summary | 183
Additional Security Restrictions for Functions Enclosed in XFDL
Forms

Note that the following methods are not available to IFX extensions that are enclosed within an XFDL
form:

■ com.PureEdge.xfdl.XFDL.readForm

■ com.PureEdge.xfdl.FormNodeP.writeForm

■ com.PureEdge.xfdl.FormNodeP.encloseFile

■ com.PureEdge.xfdl.FormNodeP.extractFile

■ com.PureEdge.ifx.IFX.ifxScanForExtensions

In addition IFX extensions that are enclosed within a form cannot execute the following functions on a
local computer:

■ Create class loaders.

■ Exit the Java virtual machine.

■ Execute a program.

■ Link to a DLL.

■ Read files.

■ Write files.

■ Delete files.

■ Print.

Summary
By working through this section you have successfully built an IFX extension for date conversion. In
the process you have learned how to set up, compile, test, and distribute IFX extensions. You also
learned how to use the following FCI methods:

■ getFunctionCallManager

■ registerInterface

The IFX extension is installed as a set of .class
files in the folder:
<Windows System>\PureEdge\java\source.

The IFX extension has full access to the user’s
system resources.

The IFX extension is packaged as a JAR (or Zip)
file and enclosed directly within a form.

The IFX extension has access only to the one form
that encloses it. The extension cannot access other
parts of the user’s system or cause any damage.

Refer to the following section regarding additional
security restrictions for functions enclosed in XFDL
forms.

Location of Installed IFX Extension Security Features

184 | Summary
■ registerFunctionCall

■ evaluate

■ help

The Convert Date sample application is included with this API. you will find it in the folder <API
Program Folder>\samples\java\fci\demo\convert_date.

In order to view the forms provided with this sample application, you must have a licensed or evaluation
copy of the ICS Viewer installed. To download an evaluation copy of the Viewer, refer to the PureEdge
web site at: www.PureEdge.com.

 FCI Library Quick Reference Guide | 185
FCI Library Quick Reference Guide
The following sections provide a quick reference guide to the classes, constants, and methods used in
the FCI Library:

■ “Holder Objects” on page 4 describes Holder objects and how to use them.

■ “The Extension Class” on page 187 describes the extensionInit method that is used to initialize an
extension and provide services for function calls.

■ “The FunctionCall Class” on page 189 describes the FunctionCall class and lists the methods
associated with the class.

■ “The IFX Class” on page 199 lists the methods that handle the management of IFX extensions.

■ “The FunctionCallManager Class” on page 205 lists the methods that handle the management of
functions.

Note: While certain methods in the FCI library require an IFSUserDataHolder as a parameter, you
will not need to manipulate this object.

About the Method Descriptions
The methods in this reference guide are listed according to the class that they belong to and are
described using the following format:

■ Description: A description of what the method does.

■ Method: Lists the method’s signature and type of value returned (if any).

■ Parameters: An explanation of the parameters to use in the call.

■ Returns: Indicates what value is returned by the method.

■ Notes: Additional information to help you use the method.

■ Example: A sample piece of code that uses the method in question.

186 | About the Method Descriptions

 The Extension Class | 187
The Extension Class
The Extension class contains the method extensionInit which is used to initialize an extension and
provide services for function calls. When the Forms System is initialized, the ICS API checks for
existing extensions and calls extensionInit for each extension.

You must create an Extension class for every extension that you create. Furthermore, the Extension
class must implement the method extensionInit since it is defined as part of the Extension interface.

The Extension class extends the pre-defined superclass com.PureEdge.ifx.ExtensionImplBase and
implements the pre-defined interface Extension. It is a good idea for your Extension class to extend the
super class com.PureEdge.ifx.ExtensionImplBase since the superclass takes care of many housekeeping
methods that must be implemented.

The Extension class must implement the method extensionInit since it is defined as part of the
Extension interface. Refer to the extensionInit method on page page 188 for more information.

Imports

You must import the following files as part of the Extension class source code:

■ com.PureEdge.ifx.Extension

■ com.PureEdge.ifx.IFX

■ com.PureEdge.error.UWIException

Example

For an example of how to set up this class and the FunctionCall class, see “Getting Started with the FCI
Library” on page 169.

188 | extensionInit com.PureEdge.ifx.Extension
extensionInit

Description

This method is responsible for the registration of all the services that the extension provides.

Method

public void extensionInit(

com.PureEdge.ifx.IFX theIFX

) throws UWIException;

Parameters

Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Notes

Use the extensionInit method to create a new FunctionCall object that contains your custom-built
functions.

Remember that in order to create a new FunctionCall object you must define a FunctionCall class that
contains your custom functions. Refer to “The FunctionCall Class” on page 189 for more details.

Example

In the following example, extensionInit creates a FunctionCall object called SimpleFunctionCall.

import com.PureEdge.ifx.IFX;
import com.PureEdge.ifx.ExtensionImplBase;
import com.PureEdge.ifx.Extension;
import com.PureEdge.xfdl.FunctionCall;
import com.PureEdge.error.UWIException;
public class SimpleExtension extends ExtensionImplBase implements
Extension
{

public void extensionInit(IFX theIFX) throws UWIException
{

FunctionCall theFunctionObject = new SimpleFunctionCall(theIFX);
}

}

Expression Type Description

theIFX IFX The IFX Manager.

 The FunctionCall Class | 189
The FunctionCall Class
The FunctionCall class contains definitions for your custom functions. It also registers each
FunctionCall object, and custom function that the object supports with the Forms System.

The FunctionCall class extends the pre-defined superclass com.PureEdge.xfdl.FunctionCallImplBase
and implements the pre-defined interface FunctionCall.

The FunctionCall class must implement the methods evaluate and help since they are defined as part of
the FunctionCall interface.

■ Remember that in order to make your functions available to the ICS API you must register your
FunctionCall object with the IFX Manager using the method called registerInterface.

■ You must also retrieve the Function Call Manager from the IFX Manager using the method
getFunctionCallManager and register each of your functions with the Function Call Manager
using the method registerFunctionCall.

■ For more information about the FunctionCallManager methods refer to “The FunctionCallManager
Class” on page 205. For more information about the IFX methods mentioned above, refer to “The
IFX Class” on page 199.

Imports

You must import the following files as part of the function call source code:

■ com.PureEdge.ifx.Extension

■ com.PureEdge.xfdl.FormNodeP

■ com.PureEdge.xfdl.FunctionCallManager

■ com.PureEdge.xfdl.FunctionCall

■ com.PureEdge.error.UWIException

■ com.PureEdge.IFSUserData

■ com.PureEdge.StringHolder

■ com.PureEdge.StringArrayHolder

■ com.PureEdge.ShortHolder

Example

For an example of how to set up this class and the Extension class, refer to “Getting Started with the
FCI Library” on page 169.

190 | FunctionCall Class Constants
FunctionCall Class Constants
The following table lists the constants that are used within the FunctionCall class along with a short
description of each constant:

Named Constants Description

FunctionCall.FCI_FOLLOWS_
STRICT_CALLING_
PARAMETERS

Used in the method registerFunctionCall as a possible value for the
parameter theFlags.

Indicates that the user of your custom function must provide the
parameters you define in the registerFunctionCall parameter
theCallingParams.

FunctionCall.FCI_WANTS_
INSTANCE_DEREGISTER_
CALL

Used in the method registerFunctionCall as a possible value for the
parameter theFlags.

Indicates that the Forms System should call evaluate with
theCommand set to FCICOMMAND_ INSTANCEDEREGISTER
when an instance of the function is deregistered.

FunctionCall.FCI_WANTS_
INSTANCE_REGISTER_CALL

Used in the method registerFunctionCall as a possible value for the
parameter theFlags.

Indicates that the Forms System should call evaluate with
theCommand set to FCICOMMAND_INSTANCEREGISTER when
an instance of the function is registered.

FunctionCall.FCI_WANTS_
REGISTER_CALL

Used in the method registerFunctionCall as a possible value for the
parameter theFlags.

Indicates that the Forms System should call evaluate with
theCommand set to FCICOMMAND_REGISTER when the function
is registered.

FunctionCall.FCIARGFLAG_
OPTIONAL

Used as a possible value for the flag theArgsFlagList in the method
help. This value represents an optional parameter.

FunctionCall.FCIARGFLAG_
OPTIONAL

Used as a possible value for the flag theRetValFlag in the method
help. This value represents a return value that is optional.

FunctionCall.FCIARGFLAG_
REPEATING

Used as a possible value for the flag theArgsFlagList in the method
help. This value represents a repeating parameter.

FunctionCall.FCIARGFLAG_
STRING

Used as a possible value for the flag theArgsFlagList in the method
help. This value represents a parameter of type String.

FunctionCall.FCIARGFLAG_
STRING

Used as a possible value for the flag theRetValFlag in the method
help. This value represents a return value of type String.

FunctionCall.FCICOMMAND_
DEREGISTER

Used in the method evaluate as a possible value for the parameter
theCommand.

This constant indicates that evaluate should execute some
procedure when the function has been deregistered.

 FunctionCall Class Constants | 191
FunctionCall.FCICOMMAND_
INSTANCEDEREGISTER

Used in the method evaluate as a possible value for the parameter
theCommand.

This constant indicates that evaluate should execute some
procedure when an instance of the function has been deregistered.

FunctionCall.FCICOMMAND_
INSTANCEREGISTER

Used in the method evaluate as a possible value for the parameter
theCommand.

This constant indicates that evaluate should execute some
procedure when an instance of the function is registered.

FunctionCall.FCICOMMAND_
REGISTER

Used in the method evaluate as a possible value for the parameter
theCommand.

This constant indicates that evaluate should execute some
procedure when the function is registered.

FunctionCall.FCICOMMAND_
RUN

Used in the method evaluate as a possible value for the parameter
theCommand.

This constant indicates that evaluate should evaluate a given
function.

FunctionCall.FUNCTIONCALL_
CURRENT_VERSION

Current version of the Function Call Interface.

Used in the methods registerInterface as a value for the parameter
theInterfaceVersion.

FunctionCall.FUNCTIONCALL_
INTERFACE_NAME

Name of the Function Call Interface.

Used in the methods registerInterface as a value for the parameter
theInterfaceName

FunctionCall.FUNCTIONCALL_
MIN_VERSION_SUPPORTED

The minimum version of the Function Call Interface that is supported.

Used in the methods registerInterface as a value for the parameter
theMinInterfaceVersion.

Named Constants Description

192 | evaluate com.PureEdge.xfdl.FunctionCall
evaluate

Description

This method performs the necessary work for your custom-built function. You will have to insert the
details of your custom functions within this method.

Method

public void evaluate(

String thePackageName,

String theFunctionName,

int theFunctionID,

int theFunctionInstance,

short theCommand,

com.PureEdge.xfdl.FormNodeP theForm,

com.PureEdge.xfdl.FormNodeP theComputeNode,

com.PureEdge.IFSUserDataHolder theFunctionData,

com.PureEdge.IFSUserDataHolder theFunctionInstanceData,

com.PureEdge.xfdl.FormNodeP[] theArgList,

com.PureEdge.xfdl.FormNodeP theResult

) throws UWIException;

Parameters

Expression Type Description

thePackageName String The name of the package that contains the function.

theFunctionName String The name of the function.

theFunctionID int A unique number that can be used to identify the
function.

theFunctionInstance int A unique number that differentiates one instance of
the function from another instance. See Notes for
more information.

theCommand short The name of the command for this method to
perform. See Notes for more information. Other
commands can be found within the manual.

theForm FormNodeP The form that contains the function.

theComputeNode FormNodeP The node within the form that stores the function.
See Notes for more information.

com.PureEdge.xfdl.FunctionCall evaluate | 193
Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Notes

■ theCommand — the value of theCommand represents the command that evaluate will perform.

• The value of theCommand depends on the value of the parameter called theFlags in the
method called registerFunctionCall.

• Usually theCommand will be set to FCICOMMAND_RUN. This indicates that a function
must be evaluated.

• Other possible values for theCommand include:

• FCICOMMAND_INSTANCEDEREGISTER — This constant indicates that evaluate
should execute some procedure when an instance of the function has been deregistered.

• FCICOMMAND_DEREGISTER — This constant indicates that evaluate should execute
some procedure when the function has been deregistered.

• FCICOMMAND_REGISTER — This constant indicates that evaluate should execute some
procedure when the function is registered.

• FCICOMMAND_INSTANCEREGISTER — This constant indicates that evaluate should
execute some procedure when an instance of the function is registered.

■ theFunctionInstance — is a unique number that differentiates one instance of the function with
another instance. For example, if a form contains two calls to the function testPackage.multiply
then two unique values for theFunctionInstance variable will exist.

■ theComputeNode — is the node within the form that contains the function. For example, if you
have an item such as:

<LABEL SID = "L1">
<VALUE COMPUTE = "testPackage.multiply(’7’, ’6’)"></VALUE>

</LABEL>

Then theComputeNode will point to the node that represents the value option.

theFunctionData IFSUserDataHolder Reserved. Although this expression is not used, it
must be present.

TheFunctionInstanc
eData

IFSUserDataHolder Reserved. Although this expression is not used, it
must be present.

theArgList FormNodeP [] The list of arguments. See Notes for more
information.

theResult FormNodeP The FormNodeP object in which you should store
the result. Simply use setLiteralEx on this object to
store the result.

Expression Type Description

194 | evaluate com.PureEdge.xfdl.FunctionCall
■ theFunctionInstanceData — is data specific to an instance of a function. It will always be returned
when the instance of the function is called. This object is only provided when the
FCI_WANTS_INSTANCE_DATA flag is provided during the registerFunctionCall call.

■ theArgList — Each argument’s value is stored as a literal within a FormNodeP object. For
example, to get the value of the first argument, type the following:

theArgList[0].getLiteralEx(null)

Note: To get the number of arguments in theArgList use: theArgList.length

Example

public class FciFunctionCall extends
com.PureEdge.xfdl.FunctionCallImplBase implements FunctionCall
{
public static final intFUNCTION_ID = 1;

/* Additional Code Removed */

public void evaluate(String thePackageName,
String theFunctionName, int theFunctionID,
int theFunctionInstance, short theCommand,
com.PureEdge.xfdl.FormNodeP theForm,
com.PureEdge.xfdl.FormNodeP theComputeNode,
com.PureEdge.IFSUserDataHolder theFunctionData,
com.PureEdge.IFSUserDataHolder theFunctionInstanceData,
com.PureEdge.xfdl.FormNodeP [] theArgList,
com.PureEdge.xfdl.FormNodeP theResult) throws UWIException

{

/* The first switch in this method is based on theCommand. The only case
that we are interested in handling is FCICOMMAND_RUN that indicates
that we should evaluate a function. */

switch (theCommand)
{
case FunctionCall.FCICOMMAND_RUN:

/* The second switch is based on theFunctionID that you set for each of
your custom functions. This makes it easy for a single FunctionCall
object to support multiple functions. */

switch(theFunctionID)
{
case FciFunctionCall.FUNCTION_ID:

/* Insert the Details of your custom function here */

break;
}
break;

com.PureEdge.xfdl.FunctionCall evaluate | 195
default:
break;

}
}

/* Additional code Removed */
}

196 | help com.PureEdge.xfdl.FunctionCall
help

Description

Provides help information about each of your custom functions in the form development environment
(for example, ICS Designer).

Method

public void help(

String thePackageName,

String theFunctionName,

int theFunctionID,

com.PureEdge.IFSUserDataHolder theFunctionData,

com.PureEdge.StringHolder theQuickDesc,

com.PureEdge.StringHolder theFunctionDesc,

com.PureEdge.StringHolder theSampleCode,

com.PureEdge.StringArrayHolder theArgsNameList,

com.PureEdge.StringArrayHolder theArgsDescList,

com.PureEdge.ShortArrayHolder theArgsFlagList,

com.PureEdge.StringHolder theRetValDesc,

com.PureEdge.ShortHolder theRetValFlag

) throws UWIException;

Parameters

Expression Type Description

thePackageName String The name of the package that contains the function.

theFunctionName String The name of the function.

theFunctionID int A unique number that can be used to identify the function.

theFunctionData IFSUserDataHolder Reserved. Although this expression is not used, it must
be present.

theQuickDesc StringHolder The method sets a short one-line description of what the
function does.

theFunctionDesc StringHolder The method will set a longer more detailed description of
the function.

com.PureEdge.xfdl.FunctionCall help | 197
Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Notes

■ Refer to the table “FunctionCall Class Constants” on page 190 for possible values for:

• theArgsFlagList

• theRetValFlag

Example

public void help(String thePackageName,
String theFunctionName, int theFunctionID,
com.PureEdge.IFSUserDataHolder theFunctionData,
com.PureEdge.StringHolder theQuickDesc,
com.PureEdge.StringHolder theFunctionDesc,
com.PureEdge.StringHolder theSampleCode,
com.PureEdge.StringArrayHolder theArgsNameList,
com.PureEdge.StringArrayHolder theArgsDescList,
com.PureEdge.ShortArrayHolder theArgsFlagList,
com.PureEdge.StringHolder theRetValDesc,
com.PureEdge.ShortHolder theRetValFlag) throws UWIException

{

/* Switch on theFunctionID. This makes it easy for a single FunctionCall
object to support multiple functions. */

switch(theFunctionID)
{

theSampleCode StringHolder The method will set an example of the XFDL code used
to call your function, including an example of the function
parameters.

theArgsNameList StringArrayHolder The method will set a list of arguments that your function
takes.

theArgsDescList StringArrayHolder The method will set a description of each of the
arguments in the theArgsNameList.

theArgsFlagList ShortArrayHolder The method will set a list of bit flags representing the type
of each argument that the function takes. See Notes for
more information.

theRetValDesc StringHolder The method will set a description of your custom
function’s return value.

theRetValFlag ShortHolder The method will set a bit flag representing the type of the
return value. See Notes for more information. Simply use
setLiteralEx on this object to store the result.

Expression Type Description

198 | help com.PureEdge.xfdl.FunctionCall
/* Remember that you must define an ID number for each custom function
that you create. In the example below the constant MULTIPLY represents
the identification number for the multiply function. */

case FciFunctionCall.MULTIPLY:
theQuickDesc.value = "multiplies two numbers together";
theFunctionDesc.value = "This function takes two numeric " +

"parameters and multiplies the two numbers together and " +
"returns the result.";

theSampleCode.value = "\tlabel1 = new label\n" + "\t{\n" +
"\t\tvalue = testPackage.multiply(\"10\",field2.value);\n" +
"\t\tsize = [\"10\", \"1\"];\n" + "\t}\n"+
"\tfield2 = new field\n"+
"\t{\n" + "\t\tvalue = \"7\";\n" + "\t}\n";

/* Notice that in defining theArgsNameList below, you must create the list
before providing a value for each element in the list. */

theArgsNameList.value = new String[2];
theArgsNameList.value[0] = "number1";
theArgsNameList.value[1] = "number2";

/* Notice that in defining theArgsDescList below, you must create the list
before providing a value for each element in the list. */

theArgsDescList.value = new String[2];
theArgsDescList.value[0] = "The first number";
theArgsDescList.value[1] = "The second number";
theRetValDesc.value = "The result";
break;

}
}

 The IFX Class | 199
The IFX Class
The IFX class encapsulates methods that handle the management of extensions. To create a simple
package of functions for calling from within XFDL forms, you need to use the registerInteface method
in the IFX class.

For information on the FCI methods used to create a simple package, refer to “The
FunctionCallManager Class” on page 205.

Imports

You must import the following files as part of the IFX class source code:

■ com.PureEdge.ifx.IFX

■ com.PureEdge.UWIException

Example

For an example of how to use this method, refer to “Getting Started with the FCI Library” on page 169.

200 | deregisterInterface com.PureEdge.ifx.IFX
deregisterInterface

Description

Deregisters a function call object that has been registered with the IFX Manager.

Method

public void deregisterInterface(

com.PureEdge.GenericInterface theInterface

) throws UWIException;

Parameters

Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Notes

Generally a FunctionCall object deregisters itself from the IFX Manager. So most times you can use
the keyword this to represent the FunctionCall object to deregister.

Example

In the following example, theIFX represents the IFX Manager.

public class MyFunctionCall extends
com.PureEdge.xfdl.FunctionCallImplBase implements FunctionCall
{

/* Additional Code Removed */

public void shutdown(IFX theIFX) throws UWIException
{

theIFX.deregisterInterface(this);
}

}

Expression Type Description

theInterface GenericInterface The FunctionCall object that you are deregistering with
the IFX Manager. See Notes for more information.

com.PureEdge.ifx.IFX getInterfaceInstances | 201
getInterfaceInstances

Description

Returns a list of FunctionCall objects that are currently registered with the IFX Manager.

Method

public com.PureEdge.GenericInterface[] getInterfaceInstances(

String theInterfaceName,

int theInterfaceVersion

) throws UWIException;

Parameters

Returns

Returns a list of GenericInterface objects that must be typecast to FunctionCall objects or null if no
matching interfaces are found. Throws a generic exception (UWIException) if an error occurs.

Example

public class myFunctionCall extends
com.PureEdge.xfdl.FunctionCallImplBase
implements FunctionCall
{
GenericInterface theList[];

/* Additional Code Removed */

theList = theIFX.getInterfaceInstances
(FunctionCall.FUNCTIONCALL_INTERFACE_NAME,
FunctionCall.FUNCTIONCALL_CURRENT_VERSION);

for(int i = 0 ; i < theList.length ; i++)
{

FunctionCall theFunctionCall;
theFunctionCall = (FunctionCall)theList[i];

/* Additional Code Removed */
}

Expression Type Description

theInterfaceName String The name of the interface that you are looking for. In most
cases, a Function Call Interface.

theInterfaceVersion int The interface version.

202 | getInterfaceInstances com.PureEdge.ifx.IFX
}

com.PureEdge.ifx.IFX registerInterface | 203
registerInterface

Description

Registers a FunctionCall object with the IFX Manager.

Method

public void registerInterface(

com.PureEdge.GenericInterface theInterface,

String theInterfaceName,

int theInterfaceVersion,

int theMinInterfaceVersion,

int theFlags,

String [] theCriteriaList,

com.PureEdge.ifx.IFXCriteriaMatchingHandler theCriteriaHandler

) throws UWIException;

Parameters

Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Expression Type Description

theInterface GenericInterface The object that you are registering with the IFX Manager.
Typical setting: this (if the object is registering itself)

theInterfaceName String The name of the Interface that you are registering. In this
case a Function Call Interface. Typical setting:
FunctionCall.FUNCTIONCALL_INTERFACE_NAME

theInterfaceVersion int The function call interface version. Typical setting:
FunctionCall.FUNCTIONCALL_CURRENT_VERSION

theMinInterfaceVersi
on

int The minimum version that the interface will support.
Typical setting: FunctionCall.FUNCTIONCALL_
MIN_VERSION_SUPPORTED

theFlags int Reserved. Setting: 0

theCriteriaList String [] Reserved. Setting: null

theCriteriaHandler com.PureEdge.ifx.I
FX Criteria-
Matching Handler

Reserved. Setting: theFCM.getDefaultListener()

204 | registerInterface com.PureEdge.ifx.IFX
Notes

■ Typically, you will have to retrieve the Function Call Manager from the IFX Manager using
getFunctionCallManager before you call registerInterface.

■ Typically the registerInterface parameter called theCriteriaHandler is set to:

theFCM.getDefaultListener()

Note that theFCM is a FunctionCallManager object which represents the Function Call Manager.

Example

In the following example, theIFX represents the IFX Manager

public FciFunctionCall(IFX theIFX) throws UWIException
{

/* Additional code removed */

theIFX.registerInterface(this,
FunctionCall.FUNCTIONCALL_INTERFACE_NAME,
FunctionCall.FUNCTIONCALL_CURRENT_VERSION,
FunctionCall.FUNCTIONCALL_MIN_VERSION_SUPPORTED,0,
null, theFCM.getDefaultListener());

}

 The FunctionCallManager Class | 205
The FunctionCallManager Class
The FunctionCallManager class encapsulates methods that handle the management of FunctionCall
objects. To create a simple package of functions for calling from within XFDL forms, you need to use
the following FunctionCallManager methods:

■ registerFunctionCall

■ evaluateFunctionCall

■ getFunctionCallHelp

All of the methods described in this section act on a FunctionCallManager object. Before you can use
any of these methods you must retrieve an IFSSingleton object using the method
getFunctionCallManager. For more information on this method and other IFSSingleton methods refer
to “The IFSSingleton Class” on page 135.

Imports

You must import the following files as part of the FunctionCallManager class source code:

■ com.PureEdge.xfdl.FunctionCallManager

■ com.PureEdge.xfdl.FunctionCall

■ com.PureEdge.xfdl.FormNodeP

■ com.PureEdge.IntHolder

■ com.PureEdge.StringHolder

■ com.PureEdge.StringArrayHolder

■ com.PureEdge.ShortHolder

■ com.PureEdge.UWIException

Example

For an example of how to use these methods to create a package of functions, refer to “Getting Started
with the FCI Library” on page 169.

206 | deregisterFunctionCall com.PureEdge.xfdl.FunctionCallManager
deregisterFunctionCall

Description

Deregisters a particular function from the Function Call Manager.

Method

public void deregisterFunctionCall(

com.PureEdge.xfdl.FunctionCall theInterface,

String thePackageName,

String theFunctionName

) throws UWIException;

Parameters

Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Notes

■ theInterface - Generally a FunctionCall object will deregister its own functions, in this case use the
keyword this to represent the FunctionCall object.

■ thePackageName – Use the package name that you created when you registered the function using
registerFunctionCall.

■ theFunctionName - Use the function name that you created when you registered the function using
registerFunctionCall.

Example

public FciFunctionCall(IFX theIFX) throws UWIException
{

/* Additional code removed */

Expression Type Description

theInterface FunctionCall The FunctionCall object that contains the function that you
are deregistering with the IFX Manager. See Notes for more
information.

thePackageName String The name of the package that contains the function. See
Notes for more information.

theFunctionName String The name of the function to be deregistered. See Notes for
more information.

com.PureEdge.xfdl.FunctionCallManager deregisterFunctionCall | 207
theFCM.deregisterFunctionCall(this,"sample_package","multiply");

}

208 | evaluateFunctionCall com.PureEdge.xfdl.FunctionCallManager
evaluateFunctionCall

Description

Use this method to call a package function. Since package functions assume that they are called by the
ICS API, this method establishes any additional parameters that the function may be expecting.
Generally, function calls in a package should not be called directly since there are more parameters that
must be passed.

Method

public void evaluateFunctionCall(

String thePackageName,

String theFunctionName,

int theFunctionInstance,

short theCommand,

com.PureEdge.xfdl.FormNodeP theForm,

com.PureEdge.xfdl.FormNodeP theComputeNode,

com.PureEdge.xfdl.FormNodeP [] theArgList,

com.PureEdge.xfdl.FormNodeP theResult

) throws UWIException;

Parameters

Expression Type Description

thePackageName String The name of the package that contains the function.

theFunctionName String The name of the function.

theFunctionInstance int A unique number that differentiates one instance of the
function from another instance. See Notes for more
information.

theCommand short The name of the command for this method to perform.
Setting: Typically FCICOMMAND_ RUN. See Notes for more
information. Other commands can be found within the
manual.

theForm FormNodeP The form that contains the function.

theComputeNode FormNodeP The node within the form that contains the function. See
Notes for more information.

theArgList FormNodeP [] The list of arguments. See Notes for more information.

theResult FormNodeP The FormNodeP object in which the result will be stored.

com.PureEdge.xfdl.FunctionCallManager evaluateFunctionCall | 209
Returns

Nothing, or throws a generic exception (UWIException) if an error occurs.

Notes

■ Use this method when you are calling another function from within your source code.

■ theFunctionInstance - is a unique number that differentiates one instance of the function with
another instance. For example, if a form contains two calls to the function
sample_package.multiply then two unique values for theFunctionInstance variable will exist.

■ theComputeNode – specifies which node in the form stores the function. For example, if you have
an item such as:

<label sid = "LABEL1">
<value>sample_package.multiply("7", "6")</value>

</label>

Then theComputeNode will point to the node that represents the value option.

Example

In the following example, the function my_package.multiply uses the evaluateFunctionCall method
to call the sample_package.multiply function.

public void evaluate(String thePackageName,
String theFunctionName, int theFunctionID, int theFunctionInstance,
short theCommand, com.PureEdge.xfdl.FormNodeP theForm,
com.PureEdge.xfdl.FormNodeP theComputeNode,
com.PureEdge.IFSUserDataHolder theFunctionData,
com.PureEdge.IFSUserDataHolder theFunctionInstanceData,
com.PureEdge.xfdl.FormNodeP [] theArgList,
com.PureEdge.xfdl.FormNodeP theResult) throws UWIException

{
switch (theCommand)
{
case FunctionCall.FCICOMMAND_RUN:

switch(theFunctionID)
{
case myFC.MULTIPLY:

/* The evaluateFunctionCall method is used here to call the
sample_package.multiply function. The multiply function calculates
the result and stores it in theResult. Note that the Function Call
Manager must be retrieved. */

theFCM.evaluateFunctionCall("sample_Package","multiply",
theFunctionInstance, theCommand, theForm, theComputeNode,
theArgList,theResult);

break;
}
break;

210 | evaluateFunctionCall com.PureEdge.xfdl.FunctionCallManager
default:
break;

}
}

com.PureEdge.xfdl.FunctionCallManager getDefaultListener | 211
getDefaultListener

Description

Helps the IFX Manager determine which FunctionCall object implements a specific function.

Method

public com.PureEdge.ifx.IFXCriteriaMatchingHandler getDefaultListener() throws
UWIException

Parameters

There are no parameters for this method.

Returns

An object that can be used to locate the FunctionCall object that contains the specific function. Throws
a generic exception (UWIException) if an error occurs.

Notes

Typically, this method is used when calling the IFX method registerInterface. Refer to the method
description for registerInterface for more information.

212 | registerFunctionCall com.PureEdge.xfdl.FunctionCallManager
registerFunctionCall

Description

Registers your custom function with the Function Call Manager.

Method

public void registerFunctionCall(

com.PureEdge.xfdl.FunctionCall theFCIInterface,

String thePackageName,

String theFunctionName,

int theFunctionID,

 int theFlags,

String theCallingParams,

int theVersion,

String theQuickDesc

) throws UWIException;

Parameters

Expression Type Description

theFCIInterface FunctionCall The FunctionCall object that will handle requests for the
function. Setting: The FunctionCall object that is registering
the function. See Notes for more information.

thePackageName String The name of the package that will contain the function.

theFunctionName String The name of the function.

TheFunctionID int A unique number that can be used to identify the function. See
Notes for more information.

TheFlags int A set of flags which indicate how the custom function will be
evaluated. Setting: Typically
FCI_FOLLOWS_STRICT_CALLING_PARAMETERS or 0.
See Notes for more information.

theCallingParams String The list of parameters that this function takes. Setting: S, O, or
R. See Notes for more information.

TheVersion int The version number of the function. Setting: Function
Version Number. See Defining a Version Number below for
more information.

theQuickDesc String A short, one-line description of what the function does.

com.PureEdge.xfdl.FunctionCallManager registerFunctionCall | 213
Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Notes

■ theFCIInterface – Typically a FunctionCall object will register its own function with the Function
Call Manager. Use the keyword this to represent the current object.

■ theFunctionID - Each function that you create as part of a particular package must have a unique
identification number. Define each function’s ID number as a constant at the beginning of the
class. For example, the multiply function has an ID number of 1:

public static final intMULTIPLY_ID = 1;

• theFlags – Refer to the table of “FunctionCall Class Constants” on page 190 for a list of
possible values for theFlags.

■ theCallingParams - List the type of each parameter that the function will take and separate each
value with a comma.

• Use S to indicate a string parameter.

• If the parameter is optional, then an O is added after the S.

• If the parameter can repeat, then an R is added after the S.

• For example, if you were to register a function that had to have one parameter and optionally a
second parameter then the theCallingParams would look like the following:

"S,SO"

Defining a Version Number

■ If multiple FunctionCall objects register the same function for the same package, then the function
with the highest version number is used.

■ Version numbers are defined in hexadecimal format as follows, where the 0300 is a constant and
must be present :

■ 0x<major><minor><0300>

■ For example, a function that is version 2.1 would be represented as

■ 0x02010300

■ Define a function's version number in the parameter theVersion.

Note: For more information about using version numbers refer to page.

Example

public class FciFunctionCall extends
com.PureEdge.xfdl.FunctionCallImplBase implements FunctionCall
{
public static final intFUNCTION_ID = 1;

214 | registerFunctionCall com.PureEdge.xfdl.FunctionCallManager
/* Additional Code Removed */

 theFCM.registerFunctionCall(this,"sample_package",
"multiply",FciFunctionCall.FUNCTION_ID,
FCI.FCI_FOLLOWS_STRICT_CALLING_PARAMETERS, "S,S", 0x01000300,
"Multiplies two numbers");

}

com.PureEdge.xfdl.FunctionCallManager getFunctionCallHelp | 215
getFunctionCallHelp

Description

This method is used by the ICS API to call the FunctionCall method help.

Method

public void getFunctionCallHelp(

String thePackageName,

String theFunctionName,

int theFlagsPtr,

com.PureEdge.IntHolder theVersion,

com.PureEdge.StringHolder theQuickDesc,

com.PureEdge.StringHolder theFunctionDesc,

com.PureEdge.StringHolder theSampleCode,

com.PureEdge.StringArrayHolder theArgsNameList,

com.PureEdge.StringArrayHolder theArgsDescList,

com.PureEdge.ShortArrayHolder theArgsFlagList,

com.PureEdge.StringHolder theRetValDesc,

com.PureEdge.ShortHolder theRetValFlag

) throws UWIException;

Parameters

Expression Type Description

thePackageName String The name of the package that contains the function.

theFunctionName String The name of the function.

theFlagsPtr int Returns the flags that were set when the function was
registered with registerFunctionCall.

theVersion IntHolder The version number of the function.

theQuickDesc StringHolder A short, one-line description of what the function does.

theFunctionDesc StringHolder A longer more detailed description of the function.

theSampleCode StringHolder Provides an example of the XFDL code used to call your
function, including an example of the function
parameters.

theArgsNameList StringArrayHolder A list of arguments that your function takes.

216 | getFunctionCallHelp com.PureEdge.xfdl.FunctionCallManager
Returns

Nothing if call is successful or throws a generic exception (UWIException) if an error occurs.

Notes

Refer to the table of “FunctionCall Class Constants” on page 190 for possible values for:

■ theArgsFlagList

■ theRetValFlag

Example

In the example below the function my_package.multiply uses the getFunctionCallHelp method to
call the function help that was defined for the sample_package.multiply function.

public void help(String thePackageName,
String theFunctionName, int theFunctionID,
com.PureEdge.IFSUserDataHolder theFunctionData,
com.PureEdge.StringHolder theQuickDesc,
com.PureEdge.StringHolder theFunctionDesc,
com.PureEdge.StringHolder theSampleCode,
com.PureEdge.StringArrayHolder theArgsNameList,
com.PureEdge.StringArrayHolder theArgsDescList,
com.PureEdge.ShortArrayHolder theArgsFlagList,
com.PureEdge.StringHolder theRetValDesc,
com.PureEdge.ShortHolder theRetValFlag) throws UWIException

{

/* Additional Code Removed */

switch(theFunctionID)
{
case myFC.MULTIPLY:

IntHolder theVersion = new IntHolder();

theFCM.getFunctionCallHelp("sample_package", "multiply",
theVersion, theQuickDesc, theFunctionDesc, theSampleCode,
theArgsNameList, theArgsDescList, theArgsFlagList,

theArgsDescList StringArrayHolder A description of each of the arguments in the
theArgsNameList.

theArgsFlagList ShortArrayHolder A list of bit flags representing the type of each argument
that the function takes. See Notes for more information.

theRetValDesc StringHolder A description of your custom function’s return value.

theRetValFlag ShortHolder A bit flag representing the type of the return value. See
Notes for more information. Simply use setLiteralEx on
this object to store the result.

Expression Type Description

com.PureEdge.xfdl.FunctionCallManager getFunctionCallHelp | 217
theRetValDesc, theRetValFlag);

break;
}

}

218 | getFunctionCallList com.PureEdge.xfdl.FunctionCallManager
getFunctionCallList

Description

Lists the functions that belong to a particular package.

Method

public String [] getFunctionCallList(

String thePackageName

) throws UWIException;

Parameters

Returns

Returns a list of functions in the package or throws a generic exception (UWIException) if an error
occurs.

Example

public class FciFunctionCall extends
com.PureEdge.xfdl.FunctionCallImplBase
implements FunctionCall
{

/* Additional code removed */

public FciFunctionCall(IFX theIFX) throws UWIException
{

/* Additional code removed */

String[] functionList;
functionList = theFCM.getFunctionCallList("sample_package");

}

}

Expression Type Description

thePackageName String The package name.

com.PureEdge.xfdl.FunctionCallManager getFunctionCallPackageList | 219
getFunctionCallPackageList

Description

Lists the packages that are currently registered with the Function Call Manager.

Method

public String [] getFunctionCallPackageList() throws UWIException;

Parameters

There are no parameters for this method.

Returns

Returns a list of package names or throws a generic exception (UWIException) if an error occurs.

Example

public class FciFunctionCall extends
com.PureEdge.xfdl.FunctionCallImplBase
implements FunctionCall
{

/* Additional code removed */

public FciFunctionCall(IFX theIFX) throws UWIException
{

/* Additional code removed */

String[] packageList;
packageList = theFCM.getFunctionCallPackageList();

}

}

220 | getFunctionCallPackageList com.PureEdge.xfdl.FunctionCallManager

Appendix: JSP Support | 221
Appendix: JSP Support
Java Server Pages (JSP) is a platform independent technology designed to make it easier to add dynamic content to
web pages. A web application server compiles JSP scripts into Java servlets that are executed by the server’s Java
virtual machine. The resulting dynamic content is inserted into the web document that is then displayed in the end
user’s web browser. Because JSP technology integrates with both HTML and XML documents, you can use JSP to
extend the capabilities of XFDL forms.

This section assumes that you are familiar with both JSP and XFDL. The information in this section is not intended to
show you how to write JSP scripts. Rather, its purpose is to explain how to integrate XFDL with JSP. For information
on JSP refer to http://java.sun.com/products/jsp/. For more information on XFDL, refer to the XFDL Specification.

System Requirements
To process JSP pages that contain XFDL, your web server must be running the following software:

■ A J2EE compliant web application server such as Tomcat 3.0 or JRun 3.0.

■ Java Runtime Environment (JRE) 1.2 or greater.

■ ICS API (if you want to call API methods from your JSP code. If you require support for streaming, you must
install version 4.5.0 or greater.)

For information on how to install and configure these components, refer to the documentation that is distributed with
these products.

The XFDL document that the web server produces in response to a JSP request is identical to any other XFDL form.
As a result, end users must have ICS Viewer 3.0 or greater installed on their computer, in addition to a compatible
web browser.

Combining JSP and XFDL
Creating a JSP page involves integrating JSP elements with the source code of the original HTML or XML web
document. In the case of XFDL forms, this means adding appropriate JSP elements to the form’s XFDL code using a
text editor. Once complete, the resulting document is a JSP page and should have a .jsp extension.

Note: Once you add JSP code to an XFDL form, you will no longer be able to open the file with ICS Designer.

While the specific content of each JSP page depends on the logic of the application and the design of the form, certain
fixed elements must be present in every JSP page that contains XFDL. The following elements must appear exactly
as shown in every JSP that includes XFDL:

Element Description

<?xml version="1.0"?> This line is the standard XML file identifier. It must appear
as the first line in the JSP page. There can be no blank
lines or spaces ahead of this text.

222 | Sample JSP Page
Once you have included these standard elements, you can add the rest of your custom JSP code such as directives,
declarations, or scriptlets.

Note: The XFDL portion of the JSP page must not be compressed but it is valid to use the XFDL
<transmitformat> option to specify either ascii or binary compression for the transmission of the page.

Sample JSP Page
The following source code creates a simple JSP page containing an XFDL form. In this example, the JSP scriptlet
obtains the current date and converts it into a string. The form contains one label item that displays the date value
provided by the JSP scriptlet.

<?xml version="1.0"?>

<!-- Set the content-type so that the webserver uses ICS Viewer to interpret the
XFDL form. -->
<% response.setContentType("application/x-xfdl"); %>

<%! String theDateString; %>

<%@ page import="java.util.Date" %>

<!-- This is the JSP scriptlet -->
<%

DatetheDate = new Date();
theDateString = theDate.toString();

%>

<!-- The following XFDL code defines the form -->
<XFDL xmlns="http://www.PureEdge.com/XFDL/6.0"

xmlns:xfdl="http://www.PureEdge.com/XFDL/6.0">

<globalpage sid="global">
<global sid="global">

<formid>
<serialnumber>79F255F9-86E0-4163-B243-855EE603DF17
</serialnumber>
<version>1.3.1</version>

</formid>
<vfd_date>12/7/2001</vfd_date>

<% response.setContentType("application/x-xfdl"); %> This line sets the mime type of the http response object.
In this case, it identifies the object as an XFDL document.
As a result, the user’s browser will display the document
using ICS Viewer. With the exception of any optional
comments or whitespace, this line should appear
immediately after the XML file identifier.

Element Description

XML file identifier

Sets the mime type
to XFDL

Start of XFDL code

Sample JSP Application | 223
</global>
</globalpage>
<page sid="PAGE1">

<global sid="global"></global>
<pageid>

<serialnumber>05083920-872C-4C0A-8645-5096D4135D78
</serialnumber>

</pageid>
<vfd_pagesize>letter</vfd_pagesize>
<vfd_pagedpi>120</vfd_pagedpi>
<vfd_printsize>5;5</vfd_printsize>
<label>PAGE1</label>
<vfd_customsize>5;5;Inches</vfd_customsize>
<label sid="DATE_LABEL1">

<value> <%= theDateString%> </value>
</label>

</page>
</XFDL>

Sample JSP Application
The API includes a sample web application demonstrating how to use JSP pages to extend the functionality of XFDL
forms. This simple application consists of three files, located in the folder <API Program
Folder>\samples\java\jsp\demo. The following table describes the functions of each file:

To run this sample JSP application, you need to place the above files into your web server’s JSP folder. For example,
if you are using Tomcat 3.0 you would copy the files to <Tomcat>\webapps\examples\jsp. If you are using JRun 3.0
you would copy the files to <JRun>\servers\default\demo-app\jsp. Refer to your web server’s documentation for
more information.

Note: If you need to deploy or distribute a large web application containing many files, you may prefer to use
WAR files. In this example, a single WAR file would enclose all three files.

File Description

jspget.jsp This JSP page is an example of a standard HTTP GET operation. The first JSP
scriptlet obtains the current date and calculates the number of days until Christmas.
The XFDL form specifies two labels to display this information. The second scriptlet
creates the URL that the form’s submit button uses to call jsppostt2.jsp. Within the
XFDL portion of the page, a JSP include directive obtains a label item from getlabel.txt.

getlabel.txt Although this file does not contain a complete form, it does contain XFDL code
defining a label item. Jspget.jsp accesses this code using an include directive.

jsppost.jsp This page is an example of a standard HTTP POST operation. The scriptlet uses the
API’s streaming method readForm to obtain the number of days until Christmas and
the signature from jspget.jsp. It then uses getSignatureVerificationStatus to validate
the signature. Finally, the XFDL portion of the page specifies two labels to display the
results to the end user.

JSP expression

224 | Sample JSP Application
To run the application, users either follow a link or enter the appropriate URL in their browser’s address box. For
example, if the application is running on a Tomcat web server, the URL would be: http://<server_name>:<port>/
examples/jsp/jspget.jsp. If the application is running on a JRun server, the URL would be: http://
<server_name>:<port>/demo/jsp/jspget.jsp.

 Index | 225
Index

Symbols

== operator, 4
-> symbol, 9

A

about the API, 3
addNamespace method, 40
algorithm, looking up a hash algorithm, 144
API

about the API, 3
about the Form Library, 15
classes in the API, 25
difference between Java Edition and C Edition, 3
intializing the API, 19
possible uses for the API, 15
where the API fits into your system, 3

applications, setting up your, 17
architecture for FCI extensions, 165
argument nodes, 7, 12
attachments

attaching files to a form, 52
extracting attachments from a form, 56
removing an attachment, 102

attributes
getting a list of attributes and values, 62
getting the value of an attribute, 60
removing an attribute, 100
setting an attribute, 105

Authenticated Clickwrap
validating Authenticated Clickwrap signatures,

116, 119

B

BooleanHolder, 5

C

C API vs. Java API, 3
calling a function in a package, 208
cells, creating, 42
Certfiicate class

about, 29
certificates

getting a list of available certificates, 64, 155
getting specific certificate data, 30

child nodes, locating, 66
class files, creating, 179
classes

Certificate class, 29
classes in the API, 25
classes in the Form Library, 15, 25

DTK class, 15, 35
Extension class, 170, 187
FormNodeP class, 15, 39
FunctionCall class, 171, 189
FunctionCallManager class, 205
Hash class, 131
IFSSingleton class, 135
IFX class, 199
LocalizationManager class, 141
Security Manager class, 143
Signature class, 145
UWIException class, 15
XFDL, 151
XFDL class, 15

closing a form, 49
tutorial, 22

compiling an application
tutorial, 22

compressing a form, 128
compute node property, 7
computes

deactivating the compute system, 103, 160
setting a compute, 107

constants
FCI_FOLLOWS_STRICT_CALLING_PARAME

TERS, 190
FCI_WANTS_INSTANCE_DATA, 194
FCI_WANTS_INSTANCE_DEREGISTER_CAL

L, 190
FCI_WANTS_INSTANCE_REGISTER_CALL,

190
FCI_WANTS_REGISTER_CALL, 190
FCIARGFLAG_OPTIONAL, 190
FCIARGFLAG_REPEATING, 190
FCIARGFLAG_STRING, 190
FCICOMMAND_DEREGISTER, 190, 193
FCICOMMAND_INSTANCEDEREGISTER,

191, 193
FCICOMMAND_INSTANCEREGISTER, 191,

193
FCICOMMAND_REGISTER, 191, 193
FCICOMMAND_RUN, 191
FunctionCall class, 190
FUNCTIONCALL_CURRENT_VERSION, 191
FUNCTIONCALL_INTERFACE_NAME, 191
FUNCTIONCALL_MIN_VERSION_SUPPORTE

D, 191
UFL_AFTER_SIBLING, 50, 152
UFL_APPEND_CHILD, 50, 152
UFL_BEFORE_SIBLING, 152
UFL_GZIP_COMPRESS, 128

226 | Index
UFL_OPTION_REFERENCE, 46
UFL_ORPHAN, 50
UFL_PAGE_REFERENCE, 46
UFL_SAVE_ALLOW, 128
UFL_SEARCH, 46
UFL_SEARCH_AND_CREATE, 46
UFL_TRANSMIT_ALLOW, 128

conventions
document conventions, 1
for method descriptions, 27, 185
package naming conventions, 176

copying a node, 50
create method, 152
createCell method, 42
creating

a form or node, 152
creating cells in a form, 42

current value
about signed computes, 16

custom function, convertDate, 169
custom functions. See functions

D

data model, updating the XML data model, 129
defining, version numbers, 213
deleteSignature method, 44
deleting

a form, 22
deleting a form from memory, 49
deleting a node from memory, 49
removing an enclosure from a form, 102

dereferenceEx method, 46
dereferencing, 9

special notes on, 112
deregisterFunctionCall method, 206
deregistering a function call, 206
deregisterInterface method, 200
destroy method, 22, 49

tutorial, 22
digital certificates, getting a list of available cetificates,
64, 155
digital signatures

determining if signatures are available, 158
distributing

extensions, 180
JAR files, 180

distributing, applications, 22
document conventions, 1
DTK class, 15, 35
duplicate method, 50
duplicating a node, 50

E

encloseFile method, 52
encloseInstance method, 54
enclosures

enclosing files in a form, 52
extracting enclosures from a form, 56
removing an enclosure, 102

equals method, 4
error message, setting the language for, 142
evaluate method, 176, 192
evaluateFunctionCall method, 208
evaluating a function, 192
Extensible Forms Description Language. See XFDL
Extension class, 187

creating extensions, 170
extensionInit method, 171, 185, 188
extensions

about extensions, 163
about the IFX Manager, 166
building an extension, 179
distributing extensions, 180
embedding extensions in forms, 182
how FCI extensions work, 165
implementing an extension, 171
installing extensions, 182
intializing extensions, 187
testing, 180
tutorial, 169

extractFile method, 56
extracting enclosures, 56
extractInstance method, 57

F

FCI Library
about, 163, 164
about functions, packages and extensions, 163
about the extension architecture, 165
how FCI extensions work, 165
how the FCI Library works with the Form Library,

165
quick reference, 185
tutorial, 169

FCI_FOLLOWS_STRICT_CALLING_PARAMETER
S constant, 190
FCI_WANTS_INSTANCE_DATA constant, 194
FCI_WANTS_INSTANCE_DEREGISTER_CALL
constant, 190
FCI_WANTS_INSTANCE_REGISTER_CALL
constant, 190
FCI_WANTS_REGISTER_CALL constant, 190
FCIARGFLAG_OPTIONAL constant, 190
FCIARGFLAG_REPEATING constant, 190
FCIARGFLAG_STRING constant, 190

 Index | 227
FCICOMMAND_DEREGISTER constant, 190, 193
FCICOMMAND_INSTANCEDEREGISTER constant,
191, 193
FCICOMMAND_INSTANCEREGISTER constant,
191, 193
FCICOMMAND_REGISTER constant, 191, 193
FCICOMMAND_RUN constant, 191
Form Library

about, 15
classes, 25
classes in the Form Library, 15
getting started with the Form Library, 17
how the Form Library works with the FCI Library,

165
possible uses for the Form Library, 15
quick reference, 25

form nodes, 7, 12
formNodeP

formNodeP structure, 7
FormNodeP class, 15

about, 39
Destroy, 22

FormNodeP objects
See also nodes
about, 4, 39
comparing FormNodeP objects, 4
creating a FormNodeP object, 152
freeing FormNodeP objects from memory, 4
special notes on formNodeP objects, 71

forms
embedding extensions in forms, 182
writing a form to disk, 127

formula node property, 7
formulas

about signed formulas, 16
setting a formula, 107

freeing memory, 49
tutorial, 22

Function Call
creating a function call, 171
current version, 191
minimum version, 191
name of, 191

Function Call Interface. See FCI Library
Function Call Manager

accessing the Function Call Manager, 136
deregistering a function call, 206
listing the registered packages, 219
registering a function, 212
registering your package, 175
retrieving the manager, 173

FunctionCall class, 189
constants, 190
creating a FunctionCall class, 172

FunctionCall objects
getting a list of, 201
registering with the IFX Manager, 174

FUNCTIONCALL_CURRENT_VERSION constant,
191
FUNCTIONCALL_INTERFACE_NAME constant,
191
FUNCTIONCALL_MIN_VERSION_SUPPORTED
constant, 191
FunctionCallManager class, 205
FunctionCallManager object, 173
functions

about function version numbers, 175
about functions, 163
calling a function in a package, 208
deregistering a function, 200
deregistering a function call, 206
evaluating a function, 192
implementing your functions, 176
providing help with your functions, 178
registering a function, 203, 212
registering your package with the Function Call

Manager, 175

G

getAttribute method, 60
getAttributeList method, 62
getCertificateList method, 64
getChildren method, 66
getDataByPath method, 30, 146
getDefaultListener method, 211
getEngineCertificateList method, 155
getFunctionCallHelp method, 215
getFunctionCallList method, 218
getFunctionCallManager method, 136
getFunctionCallPackageList method, 219
getInfoEx method, 68
getInterfaceInstances method, 201
getLiteralByRefEx method, 70
getLiteralEx method, 73
getLocalizationManager method, 137
getLocalName method, 74
getNamespaceURI method, 76
getNamespaceURIFromPrefix method, 78
getNext method, 80
getNodeType method, 81
getParent method, 82
getPrefix method, 84
getPrefixFromNamespaceURI method, 86
getPrevious method, 88
getRererenceEx method, 89
getSecurityEngineName method, 92
getSecurityManager method, 138
getSigLockCount method, 94

228 | Index
getSignature method, 95
getSignatureVerificationStatus method, 97
getting information from a form, tutorial, 20
getting started

with the Form Library, 17
getXFDL method, 139
global

item, 12
page node, 12

gzip, 128

H

hash algorithm, looking up an algorithm, 144
Hash class, 131
hash method, 132
hashes

creating a hash, 132
help

providing help for your function calls, 196
providing help with your functions, 178

help method, 178, 196
hierarchy

about the node hierarchy, 7
HMAC signatures

validating HMAC signatures, 116, 119
holder objects, 4

BooleanHolder, 5
IFSUserDataHolder, 5
IntHolder, 5
ShortArrayHolder, 5
ShortHolder, 5
StringArrayHolder, 5
StringHolder, 5
StringListHolder, 5

I

ICS API. See API
identifier node property, 7
IFSSingleton class, 135
IFSUserDataHolder, 5
IFX class, 199
IFX extensions

about, 163
about the IFX Manager, 166
architecture of, 165
building an extension, 179
defining your own, 164
distributing extensions, 180
embedding extensions in forms, 182
initialization (ExtensionInit), 185
initializing, 187
installing extensions, 182
location in file system, 165

IFX Manager
about, 166
deregistering a function, 200
getting a list of registered function calls, 201
registering an object with, 203
registering the FunctionCall object, 174

initialize method, 36
initializing

IFX extensions, 188
initializing IFX extensions, 185
initializing the API, 36

instances, XML
enclosing an instance, 54
extracting an instance, 57

IntHolder, 5
introduction to this manual, 1
isDigitalSignaturesAvailable method, 158
isXFDL method, 98
item node, 7, 12
item, global, 12

J

JAR files
about MIME types, 182
distributing extensions as JAR files, 180
using JAR files with PureEdge products, 181

Java API vs. C API, 3
Java Archive Files. See JAR files

L

language, setting the default language, 142
literal property

about, 7
getting the value of, 70, 73
setting the value, 111
setting the value of the literal property, 109

loading forms
loading forms into memory, 159
tutorial, 19

local names
getting the local name of a node, 74

locale, setting the default locale, 142
Localization Manager, accessing, 137
LocalizationManager class

about, 141
LocalizationManager objects, 141
locating a node, 46
lock count, getting for a node, 94
lookupHashAlgorithm method, 144
lookupInterface method, 174

M

manifest files, creating, 180

 Index | 229
memory, freeing, 22, 49
memory, freeing FormNodeP objects, 4
method descriptions, about, 27, 185
methods

addNamespace, 40
create, 152
createCell, 42
deleteSignature, 44
dereferenceEx, 46
deregisterFunctionCall, 206
deregisterInterface, 200
destroy, 22, 49
duplicate, 50
encloseFile, 52
encloseInstance, 54
equals method, 4
evaluate, 176, 192
evaluateFunctionCall, 208
extensionInit, 188
extensionInit method, 171
extractFile, 56
extractInstance, 57
getAttribute, 60
getAttributeList, 62
getCertificateList, 64
getChildren, 66
getDataByPath, 30, 146
getDefaultListener, 211
getEngineCertificateList, 155
getFunctionCallHelp, 215
getFunctionCallList, 218
getFunctionCallManager, 136
getFunctionCallPackageList, 219
getInfoEx, 68
getInterfaceInstances, 201
getLiteralByRefEx, 70
getLiteralEx, 73
getLocalizationManager, 137
getLocalName, 74
getNamespaceURI, 76
getNamespaceURIFromPrefix, 78
getNext, 80
getNodeType, 81
getParent, 82
getPrefix, 84
getPrefixFromNamespaceURI, 86
getPrevious, 88
getReferenceEx, 89
getSecurityEngineName, 92
getSecurityManager, 138
getSigLockCount, 94
getSignature, 95
getSignatureVerificationStatus, 97
getXFDL, 139

hash, 132
help, 178, 196
initialize, 36
isDigitalSignaturesAvailable, 158
isXFDL, 98
lookupHashAlgorithm functions, 144
lookupInterface, 174
readForm, 159
registerFunctionCall, 175, 212
registerInterface, 174, 203
remove Enclosure, 102
setAttribute, 105
setDefaultLocale, 142
setFormula, 107
setLiteralByRefEx, 111
setLiteralEx, 109
signForm, 114
validateHMACWithHashedSecret, 119
validateHMACWithSecret, 116
verifyAllSignatures, 122
verifySignature, 124
writeForm, 127
xmlModelUpdate, 129

MIME types, about, 182

N

names, getting the security engine name, 92
namespace

adding a namespace to a form, 40
determining if a node is in the XFDL namespace, 98
getting the local name of a node, 74
getting the namespace prefix for a namespace URI,

86
getting the namespace prefix for a node, 84
getting the namespace URI for a node, 76
getting the namespace URI from a prefix, 78
null namespace, 10
using namespace in references, 10

node properties
compute property, 7
formula property, 7
identifier property, 7
literal property, 7
table of properties, 13
type, 7

node structure
advanced information, 11
tree structure, 12

nodes
See also attributes
See also local names
See also namespace
about the node hierarchy, 7
adding a child node, 50, 152

230 | Index
adding a sibling node, 50, 152
argument, 12
argument nodes, 7
comparing nodes, 4
compute property, 7
creating a new form node, 50
creating form nodes, 152
deleting a node, 49
determining how many times a node has been

signed, 94
duplicating a node, 50
form nodes, 7, 12
forumula property, 7
getting a node’s properties, 68
getting the literal value, 70
getting the literal value of a node, 73
global page nodes, 12
identifier property, 7
item, 12
item nodes, 7
literal property, 7
locating a child node, 66
locating a node, 46
locating the parent node, 82
node properties, 13
node tree structure, 12
option, 12
option nodes, 7
page, 7
page nodes, 12
reference, getting for a particular node, 89
root nodes, 12
setting the literal value, 111
setting the literal value of a node, 109
table of node properties, 13
traversing nodes, 80, 88
type property, 7
type, determing the node type, 81

O

objects
See also holder objects
accessing LocalizationManager objects, 137
accessing XFDL objects, 135, 136, 139
Certificate objects, 29
determining which object implements a function,

211
Extension objects, 187
FormNodeP objects, 4, 39
FunctionCall objects, 174, 189
FunctionCall objects, creating, 171
FunctionCallManager, 173
getting a list of FunctionCall objects, 201
getting a signature object, 95

Hash objects, 131, 132, 144
holder objects, 4
LocalizationManager objects, 141
registering an object with the IFX Manager, 203
Security Manager object, 138
Signature objects, 145
XFDL objects, 151

operator, ==, 4
option nodes, 7, 12
output parameters, 4

P

packages
about, 163
calling a function in a package, 208
defining your own packages, 164
listing the registered packages, 219
package naming conventions, 176
registering your package with the Function Call

Manager, 175
the sample_package, 169

page node, 7, 12
global page node, 12

parameters, output, 4
prefix, namespace See namespace
properties

getting a node’s properties, 68
table of node properties, 13

putting values into a form, tutorial, 21

Q

quick reference
FCI library, 185
Form Library, 25

R

readForm method, 159
reading

reading forms into memory, 159
reading information from a form, tutorial, 20

references
getting a reference to a particular node, 89
syntax of a reference, 8
using namespace in references, 10
using the null namespace in references, 10

registerFunctionCall method, 175, 212
registering

registering a function with the Function Call
Manager, 212

registering an object with the IFX Manager, 203
registering extensions, 188
registering services, 185

registerInterface method, 174, 203

 Index | 231
removeEnclosure method, 102
removing

removing a form from memory, 49
removing enclosures, 102

root nodes, 12

S

saving a form to disk, 127
tutorial, 21

saving enclosures to disk, 56
secret, hashing a secret, 132
security

when installing extensions, 182
security engines, getting the name, 92
Security Manager class

about, 143
Security Manager, getting the Security Manager, 138
services, registering, 187
setAttribute method, 105
setDefaultLocale method, 142
setFormula method, 107
setLiteralByRefEx method, 111
setLiteralEx method, 109
setting

setting the value of nodes that are already signed,
109

setting values in a form, tutorial, 21
shared secret, hashing a shared secret, 132
ShortArrayHolder, 5
ShortHolder, 5
Signature class

about, 145
signatures

creating signatures, 114
deleting signatures, 44
destroying signatures, 49
determing if a signature is valid, 97
determining how many times a node has been

signed, 94
getting a signature object, 95
getting specific signature data, 146
setting nodes that are already signed, 109
validating HMAC signatures, 116, 119
verifying, 124
verifying signatures, 122

signForm method, 114
signing

signing a formula, 16
singletons

Security Manager object, 138
specified object node, about, 27
StringArrayHolder, 5
StringHolder, 5
StringListHolder, 5

strings
hashing a string, 132

structures
formNodeP structure, 7

system, where the API fits, 3

T

testing extensions, 180
transmission filters, 128
traversing nodes, 66, 80, 88

traversing child nodes to particular count, 66
tree structure

sample, 12
XFDL, 11

tutorials
closing a form, 22
compiling your application, 22
distributing applications, 22
freeing memory, 22
intializing the API, 19
loading a form, 19
retrieving a value from a form, 20
setting up your application, 17
setting values in a form, 21
writing a form to disk, 21

type
determining the node type, 81
node property, 7

U

UFL_AFTER_SIBLING constant, 50, 152
UFL_APPEND_CHILD constant, 50, 152
UFL_BEFORE_SIBLING constant, 152
UFL_GZIP_COMPRESS constant, 128
UFL_ITEM_REFERENCE constant, 46
UFL_OPTION_REFERENCE constant, 46
UFL_ORPHAN constant, 50
UFL_PAGE_REFERENCE constant, 46
UFL_SAVE_ALLOW constant, 128
UFL_SEARCH constant, 46
UFL_SEARCH_AND_CREATE constant, 46
UFL_TRANSMIT_ALLOW constant, 128
UWIException class, 15

V

validateHMACWithHashedSecret method, 119
validateHMACWithSecret method, 116
validating signatures, 97
verifyAllSignatures method, 122
verifying signatures, 122, 124
verifySignature method, 124
version numbers

about function version numbers, 175, 213

232 | Index
defining version numbers, 213
example of function version numbers, 213

W

writeForm method, 127
tutorial, 21

writing a form to disk, 127
tutorial, 21

X

XFDL
about, 1

relation to FCI, 1
XFDL class, 15, 151
XFDL object, accessing, 139
XFDL objects, 151

accessing XFDL objects, 135
XFDL tree structure, 11
XML data model, updating, 129
XML instances

enclosing an instance, 54
extracting an instance, 57

xmlModelUpdate method, 129

	Introduction
	About This Manual
	Who Should Read This Manual
	Document Conventions

	About the ICS API
	Where the ICS API Fits in Your System
	Differences Between the Java and C Editions of the API
	The API Data Types
	FormNodeP Objects
	About Memory Use
	Comparing FormNodeP Objects

	Holder Objects
	Holder Constructors
	Getting and Setting Holder Values
	Holder Types

	About the API Constants

	Overview of the Form Structure
	The Node Structure
	The Node Hierarchy
	References
	Dereferencing
	Namespace in References
	The null Namespace

	Advanced Information about the Node Structure
	A Sample Hierarchy
	The Sample Tree Structure
	itemlocation Node Structure

	Node Properties

	Introduction to the Form Library
	About the Form Library
	How the Form and FCI Libraries Work Together
	The Form Classes
	Using Signatures with the Form Library

	Getting Started with the Form Library
	Setting up Your Application
	1. Create a new Java source file called calculateAge.java.
	2. Any program that calls methods from the ICS API must import the following classes:
	3. Set up the rest of your application. This generally includes defining any classes and methods ...

	Initializing the ICS API
	Loading a Form
	4. Before you can load the form, declare the XFDL object:
	5. Use IFSSingleton.getXFDL to assign the XFDL object to theXFDL. This allows you to access the r...
	6. Call the API method readForm to load the form into memory. The method returns a reference to t...

	Retrieving a Value from a Form
	7. Define the method getBirthDay and a string variable called temp.
	8. Call getLiteralByRefEx to retrieve the literal information contained in the form node PAGE1.BI...
	9. Define the following methods to retrieve the user’s birth month and year from the input form. ...

	Setting Values in a Form
	10. Define the method setBirthDay and an integer variable to reference the user’s day of birth.
	11. Call the method setLiteralByRefEx to assign the user’s day of birth to the form’s hidden day ...
	12. Define the remaining methods to set the user’s birth month and year in the form’s hidden fiel...

	Writing a Form to Disk
	13. Define the method saveForm. This method demonstrates the use of the FormNodeP method writeForm.
	14. Call the Form method writeForm and pass it the new name of the form.

	Closing a Form
	15. The program’s main method calls the API’s destroy method to delete theForm object.

	Compiling Your Application
	Distributing Applications That Use Form Methods
	Summary

	Form Library Quick Reference Guide
	ICS API Classes and Methods
	About the Method Descriptions
	About Specified Object Nodes

	The Certificate Class
	getDataByPath
	Description
	Method
	Parameters
	Notes
	About Data Paths
	Certificate Tags
	Distinguished Name Tags
	Security Engine Tags

	Returns
	Example

	The DTK Class
	initialize
	Description
	Method
	Parameters
	Returns
	Notes
	About Binding Your Applications to the API

	Example

	The FormNodeP Class
	addNamespace
	Description
	Method
	Parameters
	Returns
	Example

	createCell
	Description
	Method
	Parameters
	Returns
	Example

	deleteSignature
	Description
	Method
	Parameters
	Returns
	Example

	dereferenceEx
	Description
	Method
	Parameters
	Returns
	Notes
	FormNodeP
	1. The FormNodeP supplied can never be more than one level in the hierarchy above the starting po...
	2. If the FormNodeP is at the same level or lower in the hierarchy than the starting point of the...

	Creating a Reference String
	Determining Namespace

	Example

	destroy
	Description
	Method
	Parameters
	Returns
	Notes
	Digital Signatures

	Example

	duplicate
	Description
	Method
	Parameters
	Returns
	Example

	encloseFile
	Description
	Method
	Parameters
	Returns
	Example

	encloseInstance
	Description
	Function
	Parameters
	Returns
	Example

	extractFile
	Description
	Method
	Parameters
	Returns
	Example

	extractInstance
	Description
	Function
	Parameters
	Returns
	Example

	getAttribute
	Description
	Method
	Parameters
	Returns
	Example

	getAttributeList
	Description
	Method
	Parameters
	Returns
	Example

	getCertificateList
	Description
	Method
	Parameters
	Returns
	Example

	getChildren
	Description
	Method
	Parameters
	Returns
	Example

	getInfoEx
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	getLiteralByRefEx
	Description
	Method
	Parameters
	Returns
	Notes
	FormNodeP
	1. The FormNodeP supplied can never be more than one level in the hierarchy above the starting po...
	2. If the FormNodeP is at the same level or lower in the hierarchy than the starting point of the...
	3. If the FormNodeP is at the argument level, the search will not start from that point. Instead,...

	Creating a Reference String
	Determining Namespace

	Example

	getLiteralEx
	Description
	Method
	Parameters
	Returns
	Example

	getLocalName
	Description
	Method
	Parameters
	Returns
	Example

	getNamespaceURI
	Description
	Method
	Parameters
	Returns
	Example

	getNamespaceURIFromPrefix
	Description
	Method
	Parameters
	Returns
	Example

	getNext
	Description
	Method
	Parameters
	Returns
	Example

	getNodeType
	Description
	Method
	Parameters
	Returns
	Example

	getParent
	Description
	Method
	Parameters
	Returns
	Example

	getPrefix
	Description
	Method
	Parameters
	Returns
	Example

	getPrefixFromNamespaceURI
	Description
	Method
	Parameters
	Returns
	Example

	getPrevious
	Description
	Method
	Parameters
	Returns
	Example

	getReferenceEx
	Description
	Method
	Parameters
	Returns
	Notes
	Creating a Reference String
	Working with Namespace Prefixes
	Working with Unknown Namespaces

	Example

	getSecurityEngineName
	Description
	Method
	Parameters
	Returns
	Example

	getSigLockCount
	Description
	Method
	Parameters
	Returns
	Example

	getSignature
	Description
	Method
	Parameters
	Returns
	Example

	getSignatureVerificationStatus
	Description
	Method
	Parameters
	Returns
	Example

	isXFDL
	Description
	Method
	Parameters
	Returns
	Example

	removeAttribute
	Description
	Method
	Parameters
	Returns
	Example

	removeEnclosure
	Description
	Method
	Parameters
	Returns
	Example

	setActiveForComputationalSystem
	Description
	Method
	Parameters
	Returns
	Example

	setAttribute
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	setFormula
	Description
	Method
	Parameters
	Returns
	Example

	setLiteralEx
	Description
	Method
	Parameters
	Returns
	Notes
	Digital Signatures

	Example

	setLiteralByRefEx
	Description
	Method
	Parameters
	Returns
	Notes
	FormNodeP
	1. The FormNodeP you supply can never be more than one level in the hierarchy above the level at ...
	2. If the FormNodeP is at the same level or lower in the hierarchy than the starting point of the...

	Creating a Reference String
	Digital Signatures
	Determining Namespace

	Example

	signForm
	Description
	Method
	Parameters
	Returns
	Example

	validateHMACWithSecret
	Description
	Method
	Parameters
	Returns
	Example

	validateHMACWithHashedSecret
	Description
	Method
	Parameters
	Returns
	Example

	verifyAllSignatures
	Description
	Method
	Parameters
	Returns
	Example

	verifySignature
	Description
	Method
	Parameters
	Returns
	Example

	writeForm
	Description
	Method
	Parameters
	Returns
	Example

	xmlModelUpdate
	Description
	Function
	Parameters
	Returns
	Example

	The Hash Class
	hash
	Description
	Method
	Parameters
	Returns
	Example

	The IFSSingleton Class
	getFunctionCallManager
	Description
	Method
	Parameters
	Returns
	Example

	getLocalizationManager
	Description
	Method
	Parameters
	Returns
	Example

	getSecurityManager
	Description
	Method
	Parameters
	Returns
	Example

	getXFDL
	Description
	Method
	Parameters
	Returns
	Example

	The LocalizationManager Class
	setDefaultLocale
	Description
	Function
	Parameters
	Returns
	Example

	The SecurityManager Class
	lookupHashAlgorithm
	Description
	Method
	Parameters
	Returns
	Example

	The Signature Class
	getDataByPath
	Description
	Method
	Parameters
	Notes
	About Data Paths
	Signature Tags
	Clickwrap Signature Tags
	Certificate Tags
	Distinguished Name Tags
	HMAC Clickwrap Tags
	Security Engine Tags

	Returns
	Example

	The XFDL Class
	create
	Description
	Method
	Parameters
	Returns
	Example

	getEngineCertificateList
	Description
	Method
	Parameters
	Returns
	Example

	isDigitalSignaturesAvailable
	Description
	Method
	Parameters
	Returns
	Example

	readForm
	Description
	Method
	Parameters
	Returns
	Notes
	Duplicate Scope IDs
	Digital Signatures

	Example

	Introduction to the FCI Library
	About Functions, Packages and Extensions
	About the Function Call Interface (FCI)
	How the Form and FCI Libraries Work Together
	The FCI Extension Architecture

	Getting Started with the FCI Library
	Creating Extensions with the FCI methods
	Setting up the IFX Extension
	Creating the Extension class
	1. Create a new Java source file called FCIExtension.java.
	2. Define the Java package. For example:
	3. Import the following files and any other required files to any Java files that call FCI method...
	4. Create an Extension class that extends the pre-defined super class com.PureEdge.ifx.ExtensionI...

	Implementing the extension initialization method
	5. Implement the extensionInit method as part of the Extension class.

	Creating a new FunctionCall object
	6. Declare a new FunctionCall object before you create it in the extensionInit method.
	7. Create a new FunctionCall object inside the extensionInit method, by calling the FunctionCall ...

	Setting up the FunctionCall Class
	Creating a FunctionCall class
	8. Create a new Java source file called FciFunctionCall.java.
	9. Define the Java package. For example:
	10. Import the following API packages:
	11. Import any other required files. In this case the following files are needed to implement the...
	12. Create a FunctionCall class that extends the pre-defined superclass com.PureEdge.xfdl.Functio...
	13. Define a unique identification number for each custom function that you are going to create u...
	14. Define a FunctionCall class constructor that takes as its parameter the IFX Manager.

	Retrieving the Function Call Manager
	15. Declare the Function Call Manager before requesting it from the IFX Manager.
	16. Use the IFSSingleton method getFunctionCallManager in the function call constructor to reques...

	Registering the FunctionCall object with the IFX Manager
	17. In the FunctionCall class constructor, register the function call with the IFX Manager using ...

	Registering your packages of custom functions with the Function Call Manager
	18. Use the FunctionCallManager method registerFunctionCall in the function call constructor to r...
	About Function Version Numbers
	Package Naming Conventions

	Implementing your custom functions
	19. Implement your custom functions as part of the FunctionCall method evaluate.

	Providing help information for each of your functions
	20. Provide in-depth help information for each of the functions you create by implementing the Fu...

	Building the IFX Extension
	Testing and Distributing IFX Extensions
	Packaging IFX Extensions as JAR Files
	21. Using your favorite text-editor, create a manifest file for the IFX extensions you wish to pa...
	22. Create a JAR file from the .class files that make up your IFX extension.

	Distributing IFX Extensions for Testing or Use
	23. Copy the JAR file to the Extensions folder of the ICS product that will use the IFX extension.
	24. Copy the JAR file to the Forms System Global Extensions folder.

	Embedding IFX Extensions in XFDL Forms
	1. Create a JAR file that contains your IFX extensions.
	2. Use ICS Designer to enclose the JAR file in a form.

	About MIME Types
	Location of Installed IFX Extensions (Security Issues)
	Additional Security Restrictions for Functions Enclosed in XFDL Forms

	Summary

	FCI Library Quick Reference Guide
	About the Method Descriptions

	The Extension Class
	Imports
	Example
	extensionInit
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	The FunctionCall Class
	Imports
	Example
	FunctionCall Class Constants
	evaluate
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	help
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	The IFX Class
	Imports
	Example
	deregisterInterface
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	getInterfaceInstances
	Description
	Method
	Parameters
	Returns
	Example

	registerInterface
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	The FunctionCallManager Class
	Imports
	Example
	deregisterFunctionCall
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	evaluateFunctionCall
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	getDefaultListener
	Description
	Method
	Parameters
	Returns
	Notes

	registerFunctionCall
	Description
	Method
	Parameters
	Returns
	Notes
	Defining a Version Number
	Example

	getFunctionCallHelp
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	getFunctionCallList
	Description
	Method
	Parameters
	Returns
	Example

	getFunctionCallPackageList
	Description
	Method
	Parameters
	Returns
	Example

	Appendix: JSP Support
	System Requirements
	Combining JSP and XFDL
	Sample JSP Page
	Sample JSP Application

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

